Environmental Chemistry Letters

, Volume 17, Issue 4, pp 1565–1583 | Cite as

Nanocarrier-mediated co-delivery systems for lung cancer therapy: recent developments and prospects

  • Muhammad Asim Farooq
  • Md Aquib
  • Daulat Haleem Khan
  • Sana Ghayas
  • Anam Ahsan
  • Muhammad Ijaz
  • Parikshit Banerjee
  • Maqsood Ahmed Khan
  • Muhammad Masood Ahmad
  • Bo WangEmail author


Research has recently focused on combinational therapy using nanocarriers to overcome the obstacles associated with conventional therapy of lung cancer. The classical therapeutic approach is indeed insufficient for suppressing tumor growth. Simultaneous delivery improves therapeutic outcomes, synergistic effects, and targeting moiety. Besides, multidrug-loaded nanocarriers allows the consecutive release of two or more drugs and genes. A such nanodrug delivery system reduces drug–drug interactions and improves the pharmacokinetics profile of loaded drugs. Currently, nanotechnology-based co-delivery system is the only suitable option for lung cancer therapy. Combinational delivery systems show promising results for the treatment of lung cancer. Here we review the design and development of co-delivery systems based on nanocarriers for effective cancer treatment.


Polymeric nanoparticles Lung cancer Micelles Drug delivery systems 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alibolandi M, Ramezani M, Abnous K, Sadeghi F, Atyabi F, Asouri M, Hadizadeh F (2015) In vitro and in vivo evaluation of therapy targeting epithelial-cell adhesion-molecule aptamers for non-small cell lung cancer. J Controll Release 209:88–100. CrossRefGoogle Scholar
  2. Alibolandi M, Ramezani M, Abnous K, Hadizadeh F (2016) Aptamer-decorated biodegradable polyethylene glycol-poly(lactic-co-glycolic acid) nanopolymersomes for the targeted delivery of gemcitabine to non-small cell lung cancer in vitro. J Pharm Sci 105:1741–1750. CrossRefGoogle Scholar
  3. Al-Qattan MN, Deb PK, Tekade R (2018) KMolecular dynamics simulation strategies for designing carbon-nanotube-based targeted drug delivery. Drug Discov Today 23:235–250. CrossRefGoogle Scholar
  4. Amreddy N, Babu A, Panneerselvam J, Srivastava A, Muralidharan R, Chen A, Ramesh R (2018) Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer nanoparticles for lung cancer treatment. Nanomed Nanotechnol Biol Med 14:373–384. CrossRefGoogle Scholar
  5. Au KM, Min Y, Tian X, Zhang L, Perello V, Caster JM, Wang AZ (2015) Improving cancer chemoradiotherapy treatment by dual controlled release of wortmannin and docetaxel in polymeric nanoparticles. ACS Nano 9:8976–8996. CrossRefGoogle Scholar
  6. Babu A, Templeton AK, Munshi A, Ramesh R (2013) Nanoparticle-based drug delivery for therapy of lung cancer: progress and challenges. J Nanomater. CrossRefGoogle Scholar
  7. Bhattacharjee A (2013) Solid lipid nanoparticles technology as a novel platform for delivery of drugs. Indo Am J Pharm Res 3:4079–4097. CrossRefGoogle Scholar
  8. Castillo RR, Colilla M, Vallet-Regí M (2017) Advances in mesoporous silica-based nanocarriers for co-delivery and combination therapy against cancer. Expert Opin Drug Deliv 14:229–243. CrossRefGoogle Scholar
  9. Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF (2002) Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm 238:241–245. CrossRefGoogle Scholar
  10. Croissant JG, Zhang D, Alsaiari S, Lu J, Deng L, Tamanoi F, Khashab NM (2016) Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in vivo tumor imaging. J Controll Release 229:183–191. CrossRefGoogle Scholar
  11. Das S, Chaudhury A (2011) Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 12:62–76. CrossRefGoogle Scholar
  12. Davis ME, Chen Z, Shin DM (2010) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nanosci Technol Collect Rev Nat J 7:771–782. CrossRefGoogle Scholar
  13. De Melo-Diogo D, Gaspar VM, Costa EC, Moreira AF, Oppolzer D, Gallardo E, Correia IJ (2014) Combinatorial delivery of Crizotinib–Palbociclib–Sildenafil using TPGS–PLA micelles for improved cancer treatment. Eur J Pharm Biopharm 88:718–729. CrossRefGoogle Scholar
  14. Dilnawaz F, Sahoo SK (2018) Augmented anticancer efficacy by si-RNA complexed drug-loaded mesoporous silica nanoparticles in lung cancer therapy. ACS Appl Nano Mater 1:730–740. CrossRefGoogle Scholar
  15. Ding Qu YM, Sun W, Chen Y, Zhou J, Liu C, Huang M (2015) Microemulsion-based synergistic dual-drug codelivery system for enhanced apoptosis of tumor cells. Int J Nanomed 10:1173Google Scholar
  16. Elgohary MM, Helmy MW, Mortada SM, Elzoghby AO (2018) Dual-targeted nano-in-nano albumin carriers enhance the efficacy of combined chemo/herbal therapy of lung cancer. Nanomedicine 13:2221–2224. CrossRefGoogle Scholar
  17. Feng T, Tian H, Xu C, Lin L, Xie Z, Lam MHW, Chen X (2014) Synergistic co-delivery of doxorubicin and paclitaxel by porous PLGA microspheres for pulmonary inhalation treatment. Eur J Pharm Biopharm 88:1086–1093. CrossRefGoogle Scholar
  18. Ganesh S, Iyer AK, Gattacceca F, Morrissey DV, Amiji MM (2013) In vivo biodistribution of siRNA and cisplatin administered using CD44-targeted hyaluronic acid nanoparticles. J Controll Release 172:699–706. CrossRefGoogle Scholar
  19. Gao H (2016) Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B 6:268–286. CrossRefGoogle Scholar
  20. Garbuzenko OB, Winkler J, Tomassone MS, Minko T (2014) Biodegradable Janus nanoparticles for local pulmonary delivery of hydrophilic and hydrophobic molecules to the lungs. Langmuir 30:12941–12949. CrossRefGoogle Scholar
  21. Han Y, Zhang P, Chen Y, Sun J, Kong F (2014) Co-delivery of plasmid DNA and doxorubicin by solid lipid nanoparticles for lung cancer therapy. Int J Mol Med 34:191–196. CrossRefGoogle Scholar
  22. Han W, Shi L, Ren L, Zhou L, Li T, Qiao Y, Wang H (2018) A nanomedicine approach enables co-delivery of cyclosporin A and gefitinib to potentiate the therapeutic efficacy in drug-resistant lung cancer. Signal Transduct Target Therapy. CrossRefGoogle Scholar
  23. Hao S, Yan Y, Ren X, Xu Y, Chen L, Zhang H (2015) Candesartan-graft-polyethyleneimine cationic micelles for effective co-delivery of drug and gene in anti-angiogenic lung cancer therapy. Biotechnol Bioprocess Eng 20:550–560. CrossRefGoogle Scholar
  24. He Z, Huang J, Xu Y, Zhang X, Teng Y, Huang C, Sun W (2015) Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG–PLGA copolymer nanoparticles for the treatment of non-small lung cancer. Oncotarget 6:42–50. CrossRefGoogle Scholar
  25. He Y, Su Z, Xue L, Xu H, Zhang C (2016a) Co-delivery of erlotinib and doxorubicin by pH-sensitive charge conversion nanocarrier for synergistic therapy. J Controll Release 229:80–92. CrossRefGoogle Scholar
  26. He Z, Shi Z, Sun W, Ma J, Xia J, Zhang X, Huang J (2016b) Hemocompatibility of folic-acid-conjugated amphiphilic PEG–PLGA copolymer nanoparticles for co-delivery of cisplatin and paclitaxel: treatment effects for non-small-cell lung cancer. Tumor Biol 37:7809–7821. CrossRefGoogle Scholar
  27. Hu CMJ, Zhang L (2012) Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochemical Pharmacol 83(8):1104–1111. CrossRefGoogle Scholar
  28. Hu CM, Aryal S, Zhang L (2010) Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv 1:323–334. CrossRefGoogle Scholar
  29. Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed 1:297CrossRefGoogle Scholar
  30. Jabbari S, Ghamkhari A, Javadzadeh Y, Salehi R, Davaran S (2018) Doxorubicin and chrysin combination chemotherapy with novel pH-responsive poly[(lactide-co-glycolic acid)-block-methacrylic acid] nanoparticle. J Drug Deliv Sci Technol 46:129–137. CrossRefGoogle Scholar
  31. Jaracz S, Chen J, Kuznetsova LV, Ojima I (2005) Recent advances in tumor-targeting anticancer drug conjugates. Bioorg Med Chem 13:5043–5054. CrossRefGoogle Scholar
  32. Jeannot V, Gauche C, Mazzaferro S, Couvet M, Vanwonterghem L, Henry M, Schatz C (2018) Anti-tumor efficacy of hyaluronan-based nanoparticles for the co-delivery of drugs in lung cancer. J Controll Release 275:117–128. CrossRefGoogle Scholar
  33. Jiang K, Shen M, Xu W (2018) Arginine, glycine, aspartic acid peptide-modified paclitaxel and curcumin co-loaded liposome for the treatment of lung cancer: in vitro/vivo evaluation. Int J Nanomed 13:25–61. CrossRefGoogle Scholar
  34. Kabary DM, Helmy MW, Elkhodairy KA, Fang JY, Elzoghby AO (2018) Hyaluronate/lactoferrin layer-by-layer-coated lipid nanocarriers for targeted co-delivery of rapamycin and berberine to lung carcinoma. Colloids Surf B 169:183–194. CrossRefGoogle Scholar
  35. Li Q, Lv S, Tang Z, Liu M, Zhang D, Yang Y, Chen X (2014) A co-delivery system based on paclitaxel grafted mPEG-b-PLG loaded with doxorubicin: preparation, in vitro and in vivo evaluation. Int J Pharm 471:412–420. CrossRefGoogle Scholar
  36. Li C, Hu J, Li W, Song G, Shen J (2017a) Combined bortezomib-based chemotherapy and p53 gene therapy using hollow mesoporous silica nanospheres for p53 mutant non-small cell lung cancer treatment. Biomater Sci 5:77–88. CrossRefGoogle Scholar
  37. Li F, Mei H, Gao Y, Xie X, Nie H, Li T, Jia L (2017b) Co-delivery of oxygen and erlotinib by aptamer-modified liposomal complexes to reverse hypoxia-induced drug resistance in lung cancer. Biomaterials 145:56–71. CrossRefGoogle Scholar
  38. Li S, Wang L, Li N, Liu Y, Su H (2017c) Combination lung cancer chemotherapy: design of a pH-sensitive transferrin-PEG-Hz-lipid conjugate for the co-delivery of docetaxel and baicalin. Biomed Pharmacother 95:548–555. CrossRefGoogle Scholar
  39. Li Z, Tan S, Li S, Shen Q, Wang K (2017d) Cancer drug delivery in the nano era: an overview and perspectives. Oncol Rep 38:611–624. CrossRefGoogle Scholar
  40. Liu J, He J, Zhang M, Xu G, Ni PA (2018) synergistic polyphosphoester-based co-delivery system of the anticancer drug doxorubicin and the tumor suppressor gene p53 for lung cancer therapy. J Mater Chem B 6:3262–3273. CrossRefGoogle Scholar
  41. Lv S, Tang Z, Li M, Lin J, Song W, Liu H, Huang Y, Zhang Y, Chen X (2014) Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer. Biomaterials 35:6118–6129. CrossRefGoogle Scholar
  42. Mahajan S, Patharkar A, Kuche K, Maheshwari R, Deb PK, Kalia K, Tekade RK (2018) Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int J Pharm. CrossRefGoogle Scholar
  43. Mandal B et al (2013) Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform. Nanomed Nanotechnol Biol Med 9:474–491. CrossRefGoogle Scholar
  44. Marguet M, Edembe L, Lecommandoux S (2012) Polymersomes in polymersomes: multiple loading and permeability control. Angew Chem 124(5):1199–1202. CrossRefGoogle Scholar
  45. Martínez-Carmona M, Colilla M, Vallet-Regí M (2015) Smart mesoporous nanomaterials for antitumor therapy. Nanomaterials 5:1906–1937. CrossRefGoogle Scholar
  46. Melani AS (2007) Inhalatory therapy training: a priority challenge for the physician. Acta Biomed 78:233–245Google Scholar
  47. Mi Y, Mu C, Wolfram J, Deng Z, Hu TY, Liu X, Ferrari MA (2016) micro/nano composite for combination treatment of melanoma lung metastasis. Adv Healthc Mater 5:936–946. CrossRefGoogle Scholar
  48. Mohammad IS, He W, Yin LA (2018) smart paclitaxel-disulfiram nanocrystals for efficient MDR reversal and enhanced apoptosis. Pharm Res 35:77. CrossRefGoogle Scholar
  49. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Nonsmall cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83:584–594. CrossRefGoogle Scholar
  50. Muddineti OS, Shah A, Rompicharla SVK, Ghosh B, Biswas S (2018) Cholesterol-grafted chitosan micelles as a nanocarrier system for drug-siRNA co-delivery to the lung cancer cells. Int J Biol Macromol 118:857–863. CrossRefGoogle Scholar
  51. Olov N, Bagheri-Khoulenjani S, Mirzadeh H (2018) Combinational drug delivery using nanocarriers for breast cancer treatments: a review. J Biomed Mater Res Part A 106:2272–2283. CrossRefGoogle Scholar
  52. Otto DP, Otto A, de Villiers MM (2015) Differences in physicochemical properties to consider in the design, evaluation and choice between microparticles and nanoparticles for drug delivery. Expert Opin Drug Deliv 12:763–777. CrossRefGoogle Scholar
  53. Parashar P, Rathor M, Dwivedi M, Saraf SA (2018) Hyaluronic acid decorated naringenin nanoparticles: appraisal of chemopreventive and curative potential for lung cancer. Pharmaceutics 10:33. CrossRefGoogle Scholar
  54. Pushpalatha R, Selvamuthukumar S, Kilimozhi D (2017) Nanocarrier mediated combination drug delivery for chemotherapy: a review. J Drug Deliv Sci Technol 39:362–371. CrossRefGoogle Scholar
  55. Qu MH, Zeng RF, Fang S, Dai QS, Li HP, Long JT (2014) Liposome-based co-delivery of siRNA and docetaxel for the synergistic treatment of lung cancer. Int J Pharm 474:112–122. CrossRefGoogle Scholar
  56. Rabinow BE (2004) Nanosuspensions in drug delivery. Nat Rev Drug Discov 3:785–796. CrossRefGoogle Scholar
  57. Ramalingam SS, Owonikoko TK, Khuri FR (2011) Lung cancer: new biological insights and recent therapeutic advances. CA Cancer J Clin 61(2):91–112. CrossRefGoogle Scholar
  58. Sahoo SK, Labhasetwar V (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Today 8:1112–1120. CrossRefGoogle Scholar
  59. Seifi-Najmi M, Hajivalili M, Safaralizadeh R, Sadreddini S, Esmaeili S, Razavi R, Ahmadi M (2016) SiRNA/DOX lodeded chitosan-based nanoparticles: development, characterization and in vitro evaluation on A549 lung cancer cell line. Cell Mol Biol (Noisy-le-grand) 62:87–94Google Scholar
  60. Shao Z, Shao J, Tan B, Guan S, Liu Z, Zhao Z, Zhao J (2015) Targeted lung cancer therapy: preparation and optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-delivery of anticancer drugs and DNA. Int J Nanomed 10:1223CrossRefGoogle Scholar
  61. Shen J, Yin Q, Chen L, Zhang Z, Li Y (2012) Co-delivery of paclitaxel and survivin shRNA by pluronic P85-PEI/TPGS complex nanoparticles to overcome drug resistance in lung cancer. Biomaterials 33:8613–8624. CrossRefGoogle Scholar
  62. Singh RP, Sharma G, Singh S, Kumar M, Pandey BL, Koch B, Muthu MS (2016) Vitamin E TPGS conjugated carbon nanotubes improved efficacy of docetaxel with safety for lung cancer treatment. Colloids Surf B 141:429–442. CrossRefGoogle Scholar
  63. Song W, Tang Z, Li M, Lv S, Sun H, Deng M, Chen X (2014) Polypeptide-based combination of paclitaxel and cisplatin for enhanced chemotherapy efficacy and reduced side-effects. Acta Biomater 10:1392–1402. CrossRefGoogle Scholar
  64. Su WP, Cheng FY, Shieh DB, Yeh CS, Su WC (2012) PLGA nanoparticles codeliver paclitaxel and Stat3 siRNA to overcome cellular resistance in lung cancer cells. Int J Nanomed 7:4269CrossRefGoogle Scholar
  65. Su C-W, Chiang C-S, Li W-M, Hu S-H, Chen S-Y (2014) Multifunctional nanocarriers for simultaneous encapsulation of hydrophobic and hydrophilic drugs in cancer treatment. Nanomedicine. CrossRefGoogle Scholar
  66. Sung JC, Pulliam BL, Edwards DA (2007) Nanoparticles for drug delivery to the lungs. Trends Biotechnol 25:563–570. CrossRefGoogle Scholar
  67. Taratula O, Garbuzenko OB, Chen AM, Minko T (2011) Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA. J Drug Target 19:900–914. CrossRefGoogle Scholar
  68. Taratula O, Kuzmov A, Shah M, Garbuzenko OB, Minko T (2013) Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J Controll Release 171:349–357. CrossRefGoogle Scholar
  69. Tian J, Min Y, Rodgers Z, Au KM, Hagan CT, Zhang M, Wang AZ (2017a) Co-delivery of paclitaxel and cisplatin with biocompatible PLGA–PEG nanoparticles enhances chemoradiotherapy in non-small cell lung cancer models. J Mater Chem B 5:6049–6057. CrossRefGoogle Scholar
  70. Tian J, Min Y, Rodgers Z, Wan X, Qiu H, Mi Y, Roche K (2017b) Nanoparticle delivery of chemotherapy combination regimen improves the therapeutic efficacy in mouse models of lung cancer. Nanomed Nanotechnol Biol Med 13:1301–1307. CrossRefGoogle Scholar
  71. Wakaskar RR (2018) General overview of lipid–polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes. J Drug Target 26:311–318. CrossRefGoogle Scholar
  72. Wan X, Min Y, Bludau H, Keith A, Sheiko SS, Jordan R, Kabanov AV (2018) Drug combination synergy in worm-like polymeric micelles improves treatment outcome for small cell and non-small cell lung cancer. ACS Nano 12:2426–2439. CrossRefGoogle Scholar
  73. Wang BL, Shen YM, Zhang QW, Li YL, Luo M, Liu Z, Shi HS (2013) Codelivery of curcumin and doxorubicin by MPEG–PCL results in improved efficacy of systemically administered chemotherapy in mice with lung cancer. Int J Nanomed 8:3521. CrossRefGoogle Scholar
  74. Wang Y, Zhang H, Hao J, Li B, Li M, Xiuwen W (2016) Lung cancer combination therapy: co-delivery of paclitaxel and doxorubicin by nanostructured lipid carriers for synergistic effect. Drug Deliv 23:1398–1403. CrossRefGoogle Scholar
  75. Wang G, Wang Z, Li C, Duan G, Wang K, Li Q, Tao T (2018a) RGD peptide-modified, paclitaxel prodrug-based, dual-drugs loaded, and redox-sensitive lipid-polymer nanoparticles for the enhanced lung cancer therapy. Biomed Pharmacother 106:275–284. CrossRefGoogle Scholar
  76. Wang XS, Zhang L, Li X, Kong DJ, Hu XC, Ding XZ, Gao SG (2018b) Nanoformulated paclitaxel and AZD9291 synergistically eradicate non-small-cell lung cancers in vivo. Nanomedicine 10:1107–1120. CrossRefGoogle Scholar
  77. Wei W, Lv PP, Chen XM, Yue ZG, Fu Q, Liu SY, Ma GH (2013) Codelivery of mTERT siRNA and paclitaxel by chitosan-based nanoparticles promoted synergistic tumor suppression. Biomaterials 34:3912–3923. CrossRefGoogle Scholar
  78. Wu D, Wang C, Yang J, Wang H, Han H, Zhang A, Li Q (2016) Improving the intracellular drug concentration in lung cancer treatment through the codelivery of doxorubicin and miR-519c mediated by porous PLGA microparticle. Mol Pharm 13:3925–3933. CrossRefGoogle Scholar
  79. Xiong Y, Zhao Y, Miao L, Lin CM, Huang L (2016) Co-delivery of polymeric metformin and cisplatin by self-assembled core-membrane nanoparticles to treat non-small cell lung cancer. J Controll Release 244:63–73. CrossRefGoogle Scholar
  80. Xu W, Ling P, Zhang T (2013) Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly watersoluble drugs. J Drug Deliv 13:340–415. CrossRefGoogle Scholar
  81. Yokoyama M (2011) Clinical applications of polymeric micelle carrier systems in chemotherapy and image diagnosis of solid tumors. Int J Clin Exp Med 3:151–158. CrossRefGoogle Scholar
  82. Youlden DR, Cramb SM, Baade PD (2008) The international epidemiology of lung cancer: geographical distribution and secular trends. J Thorac Oncol 3:819–831. CrossRefGoogle Scholar
  83. Yu H, Xu Z, Chen X, Xu L, Yin Q, Zhang Z, Li Y (2014) Reversal of lung cancer multidrug resistance by p H-R esponsive micelleplexes mediating Co-D elivery of si RNA and paclitaxel. Macromol Biosci 14:100–109. CrossRefGoogle Scholar
  84. Zhang L et al (2008) Self-assembled lipid-polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2:1696–1702. CrossRefGoogle Scholar
  85. Zhang W, Li C, Shen C, Liu Y, Zhao X, Liu Y, Yue C (2016a) Prodrug-based nano-drug delivery system for co-encapsulate paclitaxel and carboplatin for lung cancer treatment. Drug Deliv 23:2575–2580. CrossRefGoogle Scholar
  86. Zhang X, Wang Q, Qin L, Fu H, Fang Y, Han B, Duan Y (2016b) EGF-modified mPEG–PLGA–PLL nanoparticle for delivering doxorubicin combined with Bcl-2 siRNA as a potential treatment strategy for lung cancer. Drug Deliv 23:2936–2945. CrossRefGoogle Scholar
  87. Zhu L, Perche F, Wang T, Torchilin VP (2014) Matrix metalloproteinase 2-sensitive multifunctional polymeric micelles for tumor-specific co-delivery of siRNA and hydrophobic drugs. Biomaterials. CrossRefGoogle Scholar
  88. Zylberberg C, Matosevic S (2016) Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv 23:3319–3329. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Muhammad Asim Farooq
    • 1
  • Md Aquib
    • 1
  • Daulat Haleem Khan
    • 2
  • Sana Ghayas
    • 3
  • Anam Ahsan
    • 4
  • Muhammad Ijaz
    • 5
  • Parikshit Banerjee
    • 6
  • Maqsood Ahmed Khan
    • 7
  • Muhammad Masood Ahmad
    • 8
  • Bo Wang
    • 1
    Email author
  1. 1.Department of Pharmaceutics, School of PharmacyChina Pharmaceutical UniversityNanjingPeople’s Republic of China
  2. 2.Department of PharmacyLahore College of Pharmaceutical SciencesLahorePakistan
  3. 3.Dow College of PharmacyDow University of Health SciencesKarachiPakistan
  4. 4.College of Animal Science and Veterinary MedicineShanxi Agriculture UniversityJinzhongPeople’s Republic of China
  5. 5.Department of PharmacyCOMSATS UniversityIslamabadPakistan
  6. 6.Department of Medicinal and Applied Chemistry, College of Life ScienceKaohsiung Medical UniversityKaohsiungTaiwan
  7. 7.Department of Pharmaceutics, Faculty of PharmacyZiauddin UniversityKarachiPakistan
  8. 8.Department of Pharmaceutics, College of PharmacyJouf University SakakaSakakaKingdom of Saudi Arabia

Personalised recommendations