Environmental Chemistry Letters

, Volume 17, Issue 4, pp 1539–1551 | Cite as

Polymeric nanocomposite membranes for water treatment: a review

  • Yinghao Wen
  • Jieming Yuan
  • Xingmao MaEmail author
  • Shiren Wang
  • Yuchen Liu


Water scarcity is a pressing global challenge. Filtration with actual polymeric membranes shows good capability for pollutant separation, but broad applications of polymeric membranes are limited. Filtration can be improved using nanocomposite membranes, which are formed by incorporating nanofillers into polymeric membrane matrixes. The most extensively investigated nanofillers are carbon-based nanoparticles and metal/metal oxide nanoparticles. Here, we review the performance of nanocomposite membranes in antifouling and permeability, their physical and chemical properties and we compare nanocomposite membranes with bare membranes. Nanocomposite membranes generally display better antifouling properties due to the antimicrobial properties of nanoparticles and the reduced roughness of membrane. They also demonstrate higher permeability because of the higher porosity and narrower pore size distribution created by nanofillers. The concentration of nanofillers changes membrane performance, and the optimal concentration depends on both the properties of nanoparticles and the membrane composition. Higher concentrations of nanofillers above the optimal value result in poor performance due to nanoparticle aggregation. Despite intensive research in the synthesis of nanocomposite membranes, most previous efforts are limited to laboratory scale, and the long-term membrane stability following nanofiller leakage has not been extensively investigated.


Nanocomposite membrane Nanofiller Antifouling Permeability 



  1. Abdi J, Vossoughi M, Mahmoodi N, Alemzadeh I (2017) Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chem Eng J 326:1145–1158. CrossRefGoogle Scholar
  2. Akhavan O, Ghaderi EJC (2012) Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50(5):1853–1860CrossRefGoogle Scholar
  3. Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 115(19):6279–6288. CrossRefGoogle Scholar
  4. Amin S, Abdallah H, Roushdy M, El-Sherbiny S (2016) An overview of production and development of ceramic membranes. Int J Appl Eng 11(12):7708–7721Google Scholar
  5. Bai L, Liang H, Crittenden J, Qu F, Ding A, Ma J, Du X, Guo S, Li G (2015) Surface modification of UF membranes with functionalized MWCNTs to control membrane fouling by NOM fractions. J Membr Sci 492:400–411. CrossRefGoogle Scholar
  6. Baroña G, Lim J, Choi M, Jung B (2013) Interfacial polymerization of polyamide-aluminosilicate SWNT nanocomposite membranes for reverse osmosis. Desalination 325:138–147. CrossRefGoogle Scholar
  7. Bazhin N (2015) Water flux in pressure retarded osmosis. Desalination 375:21–23. CrossRefGoogle Scholar
  8. Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem 48(10):4638–4663. CrossRefGoogle Scholar
  9. Celik E, Liu L, Choi H (2011a) Protein fouling behavior of carbon nanotube/polyethersulfone composite membranes during water filtration. Water Res 45(16):5287–5294. CrossRefGoogle Scholar
  10. Celik E, Park H, Choi H, Choi H (2011b) Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res 45(1):274–282. CrossRefGoogle Scholar
  11. Chae H, Lee J, Lee C, Kim I, Park P (2015) Graphene oxide-embeded thin-film composite reverse osmosis membrane with highflux, anti-biofouling and chlorine resistance. J Membr Sci 483:128–135CrossRefGoogle Scholar
  12. Choi W, Choi J, Bang J, Lee J (2013) Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications. ACS Appl Mater Interfaces 5(23):12510–12519. CrossRefGoogle Scholar
  13. Corry B (2008) Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B 112(5):1427–1434. CrossRefGoogle Scholar
  14. Daraei P, Madaeni S, Ghaemi N, Salehi E, Khadivi M, Moradian R, Astinchap B (2012) Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu (II) removal from water. J Membr Sci 415:250–259. CrossRefGoogle Scholar
  15. Das R, Ali M, Hamid S, Ramakrishna S, Chowdhury Z (2014) Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336:97–109. CrossRefGoogle Scholar
  16. Elimelech M, Phillip W (2011) The future of seawater desalination: energy, technology, and the environment. Science 333(6043):712–717. CrossRefGoogle Scholar
  17. Flemming H (1997) Reverse osmosis membrane biofouling. Exp Therm Fluid Sci 14(4):382–391. CrossRefGoogle Scholar
  18. Fornasiero F, Park H, Holt J, Stadermann M, Grigoropoulos NA, Bakajin O (2008) Ion exclusion by sub-2-nm carbon nanotube pores. Proc Natl Acad Sci 105(45):17250–17255. CrossRefGoogle Scholar
  19. Garba Y, Taha S, Cabon J, Dorange G (2003) Modeling of cadmium salts rejection through a nanofiltration membrane: relationships between solute concentration and transport parameters. J Membr Sci 211(1):51–58. CrossRefGoogle Scholar
  20. Gholami A, Moghadassi A, Hosseini S, Shabani S, Gholami F (2014) Preparation and characterization of polyvinyl chloride based nanocomposite nanofiltration-membrane modified by iron oxide nanoparticles for lead removal from water. J Ind Eng Chem 20(4):1517–1522. CrossRefGoogle Scholar
  21. Goh P, Ismail A (2017) A review on inorganic membranes for desalination and wastewater treatment. Desalination. CrossRefGoogle Scholar
  22. Guo W, Ngo H, Li J (2012) A mini-review on membrane fouling. Biores Technol 122:27–34. CrossRefGoogle Scholar
  23. Hinds B, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas L (2004) Aligned multiwalled carbon nanotube membranes. Science 303(5654):62–65. CrossRefGoogle Scholar
  24. Holt J, Park H, Wang Y, Stadermann M, Artyukhin A, Grigoropoulos C, Bakajin O (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312(5776):1034–1037. CrossRefGoogle Scholar
  25. Hong J, He Y (2014) Polyvinylidene fluoride ultrafiltration membrane blended with nano-ZnO particle for photo-catalysis self-cleaning. Desalination 332(1):67–75. CrossRefGoogle Scholar
  26. Hu W, Peng C, Luo W, Lv M, Li X, Li D, Fan C (2010) Graphene-based antibacterial paper. ACS Nano 4(7):4317–4323. CrossRefGoogle Scholar
  27. Hu M, Zhong K, Liang Y, Ehrman S, Mi B (2017a) Effects of particle morphology on the antibiofouling performance of silver embedded polysulfone membranes and rate of silver leaching. Ind Eng Chem Res 56(8):2240–2246. CrossRefGoogle Scholar
  28. Hu R, He Y, Zhang C, Zhang R, Li J, Zhu H (2017b) Graphene oxide-embedded polyamide nanofiltration membranes for selective ion separation. J Mater Chem A 5(48):25632–25640. CrossRefGoogle Scholar
  29. Jabbari V, Veleta J, Zarei-Chaleshtori M, Gardea-Torresdey J, Villagrán D (2016) Green synthesis of magnetic MOF@ GO and MOF@ CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants. Chem Eng J 304:774–783. CrossRefGoogle Scholar
  30. Kang G, Cao Y (2012) Development of antifouling reverse osmosis membranes for water treatment: a review. Water Res 46(3):584–600. CrossRefGoogle Scholar
  31. Kang S, Herzberg M, Rodrigues D, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24(13):6409–6413. CrossRefGoogle Scholar
  32. Kestell A, DeLorey G (2009) Nanoparticles: properties, classification, characterization, and fabrication. Nova Science Publishers, New YorkGoogle Scholar
  33. Kim S, Kwak S, Sohn B, Park T (2003) Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J Membr Sci 211(1):157–165. CrossRefGoogle Scholar
  34. Kim H, Choi K, Baek Y, Kim D, Shim J, Yoon J, Lee J (2014) High-performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions. ACS Appl Mater Interfaces 6(4):2819–2829. CrossRefGoogle Scholar
  35. Kingston C, Zepp R, Andrady A, Boverhof D, Fehir R, Hawkins D, Vejins V (2014) Release characteristics of selected carbon nanotube polymer composites. Carbon 68:33–57CrossRefGoogle Scholar
  36. Koseoglu-Imer D, Kose B, Altinbas M, Koyuncu I (2013) The production of polysulfone (PS) membrane with silver nanoparticles (AgNP): physical properties, filtration performances, and biofouling resistances of membranes. J Membr Sci 428:620–628. CrossRefGoogle Scholar
  37. Krishnamoorthy K, Umasuthan N, Mohan R, Lee J, Kim S (2012) Antibacterial activity of graphene oxide nanosheets. Sci Adv Mater 4(11):1111–1117. CrossRefGoogle Scholar
  38. Kusworo T, Soetrisnanto D, Aryanti N, Utomo D, Tambunan V, Simanjuntak N (2018) Evaluation of Integrated modified nanohybrid polyethersulfone-ZnO membrane with single stage and double stage system for produced water treatment into clean water. J Water Process Eng 23:239–249. CrossRefGoogle Scholar
  39. Laohaprapanon S, Vanderlipe A, Doma B Jr, You S (2017) Self-cleaning and antifouling properties of plasma-grafted poly (vinylidene fluoride) membrane coated with ZnO for water treatment. J Taiwan Inst Chem Eng 70:15–22. CrossRefGoogle Scholar
  40. Lee C, Wei X, Kysar J, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388. CrossRefGoogle Scholar
  41. Lee J, Jang J, Chae H, Lee S, Lee C, Park P, Kim I (2015) A facile route to enhance the water flux of a thin-film composite reverse osmosis membrane: incorporating thickness-controlled graphene oxide into a highly porous support layer. J Mater Chem A 3(44):22053–22060. CrossRefGoogle Scholar
  42. Lee A, Elam J, Darling S (2016a) Membrane materials for water purification: design, development, and application. Environ Sci Water Res Technol 2(1):17–42. CrossRefGoogle Scholar
  43. Lee J, Jeong S, Liu Z (2016b) Progress and challenges of carbon nanotube membrane in water treatment. Crit Rev Environ Sci Technol 46(11–12):999–1046. CrossRefGoogle Scholar
  44. Lee J, Ye Y, Ward A, Zhou C, Chen V, Minett A, Shi J (2016c) High flux and high selectivity carbon nanotube composite membranes for natural organic matter removal. Sep Purif Technol 163:109–119. CrossRefGoogle Scholar
  45. Li X, Fang X, Pang R, Li J, Sun X, Shen J, Wang L (2014) Self-assembly of TiO2 nanoparticles around the pores of PES ultrafiltration membrane for mitigating organic fouling. J Membr Sci 467:226–235. CrossRefGoogle Scholar
  46. Liang S, Xiao K, Mo Y, Huang X (2012) A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. J Membr Sci 394:184–192. CrossRefGoogle Scholar
  47. Lin Y, Tseng H, Wey M, Lin M (2009) Characteristics, morphology, and stabilization mechanism of PAA250K-stabilized bimetal nanoparticles. Coll Surf A 349(1–3):137–144. CrossRefGoogle Scholar
  48. Liu J, Gao Y, Cao D, Zhang L, Guo Z (2011) Nanoparticle dispersion and aggregation in polymer nanocomposites: insights from molecular dynamics simulation. Langmuir 27(12):7926–7933. CrossRefGoogle Scholar
  49. Majeed S, Fierro D, Buhr K, Wind J, Du B, Boschetti-de-Fierro A, Abetz V (2012) Multi-walled carbon nanotubes (MWCNTs) mixed polyacrylonitrile (PAN) ultrafiltration membranes. J Membr Sci 403:101–109. CrossRefGoogle Scholar
  50. Mauter M, Wang Y, Okemgbo K, Osuji C, Giannelis E, Elimelech M (2011) Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials. ACS Appl Mater Interfaces 3(8):2861–2868. CrossRefGoogle Scholar
  51. Maximous N, Nakhla G, Wan W, Wong K (2010) Performance of a novel ZrO2/PES membrane for wastewater filtration. J Membr Sci 352(1–2):222–230. CrossRefGoogle Scholar
  52. Mollahosseini A, Rahimpour A, Jahamshahi M, Peyravi M, Khavarpour M (2012) The effect of silver nanoparticle size on performance and antibacteriality of polysulfone ultrafiltration membrane. Desalination 306:41–50. CrossRefGoogle Scholar
  53. Mulder J (2012) Basic principles of membrane technology. Springer, New YorkGoogle Scholar
  54. Murthy ZVP, Gaikwad MS (2013) Preparation of chitosan-multiwalled carbon nanotubes blended membranes: characterization and performance in the separation of sodium and magnesium ions. Nanoscale Microscale Thermophys Eng 17:245–262CrossRefGoogle Scholar
  55. Nair R, Wu H, Jayaram P, Grigorieva I, Geim A (2012) Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335(6067):442–444. CrossRefGoogle Scholar
  56. Ng LY, Mohammad AW, Leo CP, Hilal N (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33CrossRefGoogle Scholar
  57. Ogoshi T, Chujo Y (2005) Synthesis of poly (vinylidene fluoride)(PVdF)/silica hybrids having interpenetrating polymer network structure by using crystallization between PVDF chains. J Polym Sci Part A Polym Chem 43(16):3543–3550. CrossRefGoogle Scholar
  58. Pendergast M, Hoek E (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4(6):1946–1971. CrossRefGoogle Scholar
  59. Perreault F, Tousley M, Elimelech M (2013) Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environ Sci Technol Lett 1(1):71–76. CrossRefGoogle Scholar
  60. Qadir D, Mukhtar H, Keong L (2017) Mixed matrix membranes for water purification applications. Sep Purif Rev 46(1):62–80. CrossRefGoogle Scholar
  61. Qiu S, Wu L, Pan X, Zhang L, Chen H, Gao C (2009) Preparation and properties of functionalized carbon nanotube/PSF blend ultrafiltration membranes. J Membr Sci 342(1–2):165–172. CrossRefGoogle Scholar
  62. Qiu L, Yang X, Gou X, Yang W, Ma Z, Wallace G, Li D (2010) Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives. Chem A Eur J 16(35):10653–10658. CrossRefGoogle Scholar
  63. Rahimpour A, Jahanshahi M, Khalili S, Mollahosseini A, Zirepour A, Rajaeian B (2012) Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane. Desalination 286:99–107. CrossRefGoogle Scholar
  64. Rajabi H, Ghaemi N, Madaeni S, Daraei P, Astinchap B, Zinadini S, Razavizadeh S (2015) Nano-ZnO embedded mixed matrix polyethersulfone (PES) membrane: influence of nanofiller shape on characterization and fouling resistance. Appl Surf Sci 349:66–77. CrossRefGoogle Scholar
  65. Raval H, Trivedi J, Joshi S, Devmurari C (2010) Flux enhancement of thin film composite RO membrane by controlled chlorine treatment. Desalination 250(3):945–949. CrossRefGoogle Scholar
  66. Sakthivel S, Neppolian B, Shankar M, Arabindoo B, Palanichamy M, Murugesan V (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells 77(1):65–82. CrossRefGoogle Scholar
  67. Salas E, Sun Z, Lüttge A, Tour J (2010) Reduction of graphene oxide via bacterial respiration. ACS Nano 4(8):4852–4856. CrossRefGoogle Scholar
  68. Shannon M, Bohn P, Elimelech M, Georgiadis J, Marinas B, Mayes A (2010) Science and technology for water purification in the coming decades. In: Nanoscience and technology: a collection of reviews from nature journals. World Scientific, Singapore, pp 337–346. CrossRefGoogle Scholar
  69. Shao F, Dong L, Dong H, Zhang Q, Zhao M, Yu L, Chen Y (2017) Graphene oxide modified polyamide reverse osmosis membranes with enhanced chlorine resistance. J Membr Sci 525:9–17. CrossRefGoogle Scholar
  70. Som C, Berges M, Chaudhry Q, Dusinska M, Fernandes T, Olsen S, Nowack B (2010) The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269(2–3):160–169. CrossRefGoogle Scholar
  71. Song X, Zhou Q, Zhang T, Xu H, Wang ZJJ (2016) Pressure-assisted preparation of graphene oxide quantum dot-incorporated reverse osmosis membranes: antifouling and chlorine resistance potentials. J Mater Chem A 4(43):16896–16905CrossRefGoogle Scholar
  72. Torad N, Hu M, Ishihara S, Sukegawa H, Belik A, Imura M, Yamauchi Y (2014) Direct synthesis of MOF-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment. Small 10(10):2096–2107. CrossRefGoogle Scholar
  73. Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47(7):2217–2262. CrossRefGoogle Scholar
  74. Van der Bruggen B, Vandecasteele C, Van Gestel T, Doyen W, Leysen R (2003) A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ Prog 22(1):46–56. CrossRefGoogle Scholar
  75. Vilar G, Fernández-Rosas E, Puntes V, Jamier V, Aubouy L, Vázquez-Campos S (2013) Monitoring migration and transformation of nanomaterials in polymeric composites during accelerated aging. In: Paper presented at the journal of physics: conference seriesGoogle Scholar
  76. Wan H, Briot N, Saad A, Ormsbee L, Bhattacharyya D (2017) Pore functionalized PVDF membranes with in situ synthesized metal nanoparticles: material characterization, and toxic organic degradation. J Membr Sci 530:147–157. CrossRefGoogle Scholar
  77. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388(6641):431. CrossRefGoogle Scholar
  78. Wang G, Qian F, Saltikov C, Jiao Y, Li Y (2011) Microbial reduction of graphene oxide by Shewanella. Nano Res 4(6):563–570. CrossRefGoogle Scholar
  79. Wang N, Ji S, Zhang G, Li J, Wang L (2012a) Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation. Chem Eng J 213:318–329. CrossRefGoogle Scholar
  80. Wang Z, Yu H, Xia J, Zhang F, Li F, Xia Y, Li Y (2012b) Novel GO-blended PVDF ultrafiltration membranes. Desalination 299:50–54. CrossRefGoogle Scholar
  81. Wang J, Zhang P, Liang B, Liu Y, Xu T, Wang L, Pan K (2016) Graphene oxide as an effective barrier on a porous nanofibrous membrane for water treatment. ACS Appl Mater Interfaces 8(9):6211–6218. CrossRefGoogle Scholar
  82. World Health Organization (2018) Drinking-water. Accessed 16 Feb 2019
  83. Wu J, Yu C, Li Q (2015) Regenerable antimicrobial activity in polyamide thin film nanocomposite membranes. J Membr Sci 476:119–127. CrossRefGoogle Scholar
  84. Xu Z, Zhang J, Shan M, Li Y, Li B, Niu J, Qian X (2014) Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes. J Membr Sci 458:1–13. CrossRefGoogle Scholar
  85. Yang Q, Lin X, Su B (2016) Molecular filtration by ultrathin and highly porous silica nanochannel membranes: permeability and selectivity. Anal Chem 88(20):10252–10258. CrossRefGoogle Scholar
  86. Yin J, Deng B (2015) Polymer-matrix nanocomposite membranes for water treatment. J Membr Sci 479:256–275. CrossRefGoogle Scholar
  87. Yu L, Zhang Y, Zhang B, Liu J, Zhang H, Song C (2013) Preparation and characterization of HPEI-GO/PES ultrafiltration membrane with antifouling and antibacterial properties. J Membr Sci 447:452–462. CrossRefGoogle Scholar
  88. Zaman N, Rohani R, Mohammad A, Isloor A (2018) Polyimide-graphene oxide nanofiltration membrane: characterizations and application in enhanced high concentration salt removal. Chem Eng Sci 177:218–233. CrossRefGoogle Scholar
  89. Zhang C, Ren L, Wang X, Liu T (2010) Graphene oxide-assisted dispersion of pristine multiwalled carbon nanotubes in aqueous media. J Phys Chem C 114(26):11435–11440. CrossRefGoogle Scholar
  90. Zhang L, Shi G, Qiu S, Cheng L, Chen H (2011) Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes. Desalination Water Treat 34(1–3):19–24. CrossRefGoogle Scholar
  91. Zhang Z, An Q, Liu T, Zhou Y, Qian J, Gao C (2012) Fabrication and characterization of novel SiO2-PAMPS/PSF hybrid ultrafiltration membrane with high water flux. Desalination 297:59–71. CrossRefGoogle Scholar
  92. Zhang J, Xu Z, Shan M, Zhou B, Li Y, Li B, Qian X (2013) Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes. J Membr Sci 448:81–92. CrossRefGoogle Scholar
  93. Zhang R, Liu Y, He M, Su Y, Zhao X, Elimelech M, Jiang Z (2016) Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem Soc Rev 45(21):5888–5924. CrossRefGoogle Scholar
  94. Zhao X, Ma J, Wang Z, Wen G, Jiang J, Shi F, Sheng L (2012) Hyperbranched-polymer functionalized multi-walled carbon nanotubes for poly (vinylidene fluoride) membranes: from dispersion to blended fouling-control membrane. Desalination 303:29–38. CrossRefGoogle Scholar
  95. Zhao Y, Xu Z, Shan M, Min C, Zhou B, Li Y, Qian X (2013) Effect of graphite oxide and multi-walled carbon nanotubes on the microstructure and performance of PVDF membranes. Sep Purif Technol 103:78–83. CrossRefGoogle Scholar
  96. Zhao H, Qiu S, Wu L, Zhang L, Chen H, Gao C (2014) Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes. J Membr Sci 450:249–256. CrossRefGoogle Scholar
  97. Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li Q, Alvarez P (2009) Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res 43(3):715–723. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Zachry Department of Civil and Environmental EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Department of Industry and Systems EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations