Advertisement

Environmental Chemistry Letters

, Volume 17, Issue 4, pp 1523–1527 | Cite as

Engineered nanostructured materials: benefits and risks

  • Vinod Kumar YataEmail author
Review
  • 47 Downloads

Abstract

Engineered nanostructured materials have widespread applications in multiple fields ranging from diagnosis to treatment of diseases. These materials are used in bioimaging, drug delivery and beauty care products. The preparation of nanostructured materials does not involve specific methods but different types of materials are synthesized by various strategies to reach a nanoscale dimension, so their range of effect will also vary depending upon the material and strategy involved. In recent years, nanostructured materials and their effect on human health has become a debatable issue. The conclusion is that most nanostructured materials have toxicity issues with one or more cell lines or organisms, though very few are lethal at very low concentration. This review updates the information on a wide range of nanostructured materials and studies showing associated health benefits and risks.

Keywords

Nanoparticles Toxicity Drug delivery Bio imaging 

Notes

References

  1. Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61(6):457–466CrossRefGoogle Scholar
  2. Alarifi S, Ali D, Alkahtani S, Verma A, Ahamed M, Ahmed M, Alhadlaq HA (2013) Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. Int J Nanomedicine 8:983–993CrossRefGoogle Scholar
  3. Augustus EN, Allen ET, Nimibofa A, Donbebe W (2017) A review of synthesis, characterization and applications of functionalized dendrimers. Am J Polym Sci 7(1):8–14Google Scholar
  4. Barhoumi L, Dewez D (2013) Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris. Biomed Res Int 2013:647974.  https://doi.org/10.1155/2013/647974 CrossRefGoogle Scholar
  5. Bera D, Qian L, Tseng TK, Holloway PH (2010) Quantum dots and their multimodal applications: a review. Materials 3(4):2260–2345CrossRefGoogle Scholar
  6. Bhatt I, Tripathi BN (2011) Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82(3):308–317CrossRefGoogle Scholar
  7. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346CrossRefGoogle Scholar
  8. de Lima R, Seabra AB, Durán N (2012) Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol 32(11):867–879CrossRefGoogle Scholar
  9. Doktorovova S, Souto EB, Silva AM (2014) Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers—a systematic review of in vitro data. Eur J Pharm Biopharm 87(1):1–18CrossRefGoogle Scholar
  10. Duclaux L (2002) Review of the doping of carbon nanotubes (multiwalled and single-walled). Carbon 40(10):1751–1764CrossRefGoogle Scholar
  11. Dykes GM (2001) Dendrimers: a review of their appeal and applications. J Chem Technol Biotechnol 76(9):903–918CrossRefGoogle Scholar
  12. Ekambaram P, Sathali AAH, Priyanka K (2012) Solid lipid nanoparticles: a review. Sci Rev Chem Commun 2(1):80–102Google Scholar
  13. Gajbhiye V, Vijayaraj KP, Kumar TR, Jain N (2007) Pharmaceutical and biomedical potential of PEGylated dendrimers. Curr Pharm Des 13(4):415–429CrossRefGoogle Scholar
  14. Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48(1):1–29CrossRefGoogle Scholar
  15. Gupta AK, Gupta M (2005) Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26(13):1565–1573CrossRefGoogle Scholar
  16. Hardman R (2005) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114(2):165–172CrossRefGoogle Scholar
  17. Jain K, Kesharwani P, Gupta U, Jain N (2010) Dendrimer toxicity: let's meet the challenge. Int J Pharm 394(1):122–142CrossRefGoogle Scholar
  18. Khampieng T, Aramwit P, Supaphol P (2015) Silk sericin loaded alginate nanoparticles: preparation and anti-inflammatory efficacy. Int J Biol Macromol 80:636–643CrossRefGoogle Scholar
  19. Kołodziejczak-Radzimska A, Jesionowski T (2014) Zinc oxide—from synthesis to application: a review. Materials 7(4):2833–2881CrossRefGoogle Scholar
  20. Lai F, Wissing SA, Müller RH, Fadda AM (2006) Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS Pharm Sci Tech 7(1):E10–E18CrossRefGoogle Scholar
  21. Mahmoudi M, Milani AS, Stroeve P (2010) Synthesis, surface architecture and biological response of superparamagnetic iron oxide nanoparticles for application in drug delivery: a review. Int J Biomed Nanosci Nanotechnol 1(2–4):164–201CrossRefGoogle Scholar
  22. Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2011) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112(4):2323–2338CrossRefGoogle Scholar
  23. Martins M, Azoia NG, Melle-Franco M, Ribeiro A, Cavaco-Paulo A (2017) Permeation of skin with (C60) fullerene dispersions. Eng Life Sci 17(7):732–738CrossRefGoogle Scholar
  24. Mironava T, Hadjiargyrou M, Simon M, Rafailovich MH (2014) Gold nanoparticles cellular toxicity and recovery: adipose derived stromal cells. Nanotoxicology 8(2):189–201CrossRefGoogle Scholar
  25. Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186(1):1–15CrossRefGoogle Scholar
  26. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):32CrossRefGoogle Scholar
  27. Prina-Mello A, Crosbie-Staunton K, Salas G, del Puerto Morales M, Volkov Y (2013) Multi parametric toxicity evaluation of SPIONs by high content screening technique: identification of biocompatible multifunctional nanoparticles for nanomedicine. IEEE Trans Magn 49(1):377–382CrossRefGoogle Scholar
  28. Selim ME, Hendi AA (2012) Gold nanoparticles induce apoptosis in MCF-7 human breast cancer cells. Asian Pac J Cancer Prev 13(4):1617–1620CrossRefGoogle Scholar
  29. Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10(1):15CrossRefGoogle Scholar
  30. Singh S, Kumar S, Yata VK (2019) Health benefits and potential risks of nanostructured materials. In: Dasgupta N, Ranjan S, Lichtfouse E (eds) Environmental nanotechnology Environmental chemistry for a sustainable world, vol 21. Springer, Cham.Google Scholar
  31. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7(3):219–242CrossRefGoogle Scholar
  32. Suman T, Rajasree SR, Kirubagaran R (2015) Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicol Environ Saf 113:23–30CrossRefGoogle Scholar
  33. Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912CrossRefGoogle Scholar
  34. Wang Z, Wang K, Lu X, Li C, Han L, Xie C, Liu Y, Qu S, Zhen G (2015) Nanostructured architectures by assembling polysaccharide-coated BSA nanoparticles for biomedical application. Adv Healthc Mater 4(6):927–937CrossRefGoogle Scholar
  35. Weir A, Westerhoff P, Fabricius L, Hristovski K, Von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ sci technol 46(4):2242–2250CrossRefGoogle Scholar
  36. Yata VK, Ghosh SS (2011) Synthesis and characterization of a novel chitosan based E. coli cytosine deaminase nanocomposite for potential application in prodrug enzyme therapy. Biotechnol Lett. 33(1):153–157CrossRefGoogle Scholar
  37. Yiu HHP, Keane MA (2011) Enzyme–magnetic nanoparticle hybrids: new effective catalysts for the production of high value chemicals. J Chem Technol Biotechnol 87(5):583–594CrossRefGoogle Scholar
  38. Zhao D, Zhao X, Zu Y, Li J, Zhang Y, Jiang R, Zhang Z (2010) Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int J Nanomed 5:669Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Animal Biotechnology CentreNational Dairy Research InstituteKarnalIndia

Personalised recommendations