Environmental Chemistry Letters

, Volume 17, Issue 4, pp 1485–1494 | Cite as

Advances in the antimicrobial and therapeutic potential of siderophores

  • Marta Ribeiro
  • Manuel SimõesEmail author


The increasing bacterial resistance from antibiotic overuse has fostered the search for novel antimicrobial strategies. In particular, bacterial systems involving iron (Fe) uptake are studied to develop new therapeutics against infectious diseases, because iron is crucial for bacterial growth and is a main virulence factor for infection. Iron assimilation is commonly based on the production of siderophores, which are iron chelators produced to facilitate iron uptake. Siderophores are thus crucial for bacterial pathogenicity. Here we review the antimicrobial and therapeutic potential of siderophores. There are three main approaches for siderophore application in antimicrobial therapy: siderophore-mediated drug delivery, inhibition of siderophores biosynthesis and iron starvation by competitive chelation. Major advances on the use of siderophores as therapeutic agents for disease treatment are also presented.


Antimicrobial resistance Bacterial infections Biofilm Drug delivery Iron Siderophores Trojan Horse approach 



This work was the result of the projects: POCI-01-0145-FEDER-030219; POCI-01-145-FEDER-006939 (Laboratory for Process Engineering, Environment, Biotechnology and Energy—UID/EQU/00511/2013) funded by the European Regional Development Fund (ERDF), through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI), and by national funds, through FCT—Fundação para a Ciência e a Tecnologia. NORTE-01-0145-FEDER-000005—LEPABE-2-ECO-INNOVATION, supported by North Portugal Regional Operational Program (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The work was undertaken as part of the COST Mutalig CA15135.


  1. Ahmed E, Holmstrom SJ (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7:196–208. CrossRefGoogle Scholar
  2. Andersson DI, Hughes D (2011) Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol Rev 35:901–911. CrossRefGoogle Scholar
  3. Antunes LC, Imperi F, Minandri F, Visca P (2012) In vitro and in vivo antimicrobial activities of gallium nitrate against multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 56:5961–5970. CrossRefGoogle Scholar
  4. Auletta S, Galli F, Lauri C, Martinelli D, Santino I, Signore A (2016) Imaging bacteria with radiolabelled quinolones, cephalosporins and siderophores for imaging infection: a systematic review. Clin Transl Imaging 4:229–252. CrossRefGoogle Scholar
  5. Ba Q, Hao M, Huang H, Hou J, Ge S, Zhang Z, Yin J, Chu R, Jiang H, Wang F, Chen K, Liu H (2011) Wang H (2011) Iron deprivation suppresses hepatocellular carcinoma growth in experimental studies. Clin Cancer Res 17:7625–7633CrossRefGoogle Scholar
  6. Banin E, Brady KM, Greenberg EP (2006) Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol 72:2064–2069. CrossRefGoogle Scholar
  7. Banin E, Lozinski A, Brady KM, Berenshtein E, Butterfield PW, Moshe M, Chevion M, Greenberg EP, Banin E (2008) The potential of desferrioxamine-gallium as an anti-Pseudomonas therapeutic agent. Proc Natl Acad Sci USA 105:16761–16766. CrossRefGoogle Scholar
  8. Barber AE, Norton JP, Spivak AM, Mulvey MA (2013) Urinary tract infections: current and emerging management strategies. Clin Infect Dis 57:719–724. CrossRefGoogle Scholar
  9. Basuli D, Tesfay L, Deng Z, Paul B, Yamamoto Y, Ning G, Xian W, McKeon F, Lynch M, Crum CP, Hegde P, Brewer M, Wang X, Miller LD, Dyment N, Torti FM, Torti SV (2017) Iron addiction: a novel therapeutic target in ovarian cancer. Oncogene 36:4089–4099. CrossRefGoogle Scholar
  10. Bonchi C, Imperi F, Minandri F, Visca P, Frangipani E (2014) Repurposing of gallium-based drugs for antibacterial therapy. BioFactors 40:303–312. CrossRefGoogle Scholar
  11. Braun V, Pramanik A, Gwinner T, Köberle M, Bohn E (2009) Sideromycins: tools and antibiotics. Biometals 22:3. CrossRefGoogle Scholar
  12. Brookes MJ, Hughes S, Turner FE, Reynolds G, Sharma N, Ismail T, Berx G, McKie AT, Hotchin N, Anderson GJ, Iqbal T, Tselepis C (2006) Modulation of iron transport proteins in human colorectal carcinogenesis. Gut 55:1449–1460. CrossRefGoogle Scholar
  13. Bunet R, Brock A, Rexer HU, Takano E (2006) Identification of genes involved in siderophore transport in Streptomyces coelicolor A3(2). FEMS Microbiol Lett 262:57–64. CrossRefGoogle Scholar
  14. Chatterjee A, O’Brian MR (2018) Rapid evolution of a bacterial iron acquisition system. Mol Microbiol. CrossRefGoogle Scholar
  15. Cheung J, Murphy ME, Heinrichs DE (2012) Discovery of an iron-regulated citrate synthase in Staphylococcus aureus. Chem Biol 19:1568–1578. CrossRefGoogle Scholar
  16. Chitambar CR (2016) Gallium and its competing roles with iron in biological systems. Biochim Biophys Acta 1863:2044–2053. CrossRefGoogle Scholar
  17. Choi JY, Neuhouser ML, Barnett MJ, Hong CC, Kristal AR, Thornquist MD, King IB, Goodman GE, Ambrosone CB (2008) Iron intake, oxidative stress-related genes (MnSOD and MPO) and prostate cancer risk in CARET cohort. Carcinogenesis 29:964–970. CrossRefGoogle Scholar
  18. Chu BC, Garcia-Herrero A, Johanson TH, Krewulak KD, Lau CK, Peacock RS, Slavinskaya Z, Vogel HJ (2010) Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. Biometals 23:601–611. CrossRefGoogle Scholar
  19. Cornelis P (2010) Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 86:1637–1645. CrossRefGoogle Scholar
  20. Dale SE, Doherty-Kirby A, Lajoie G, Heinrichs DE (2004) Role of siderophore biosynthesis in virulence of Staphylococcus aureus: identification and characterization of genes involved in production of a siderophore. Infect Immun 72:29–37. CrossRefGoogle Scholar
  21. de Leseleuc L, Harris G, KuoLee R, Chen W (2012) In vitro and in vivo biological activities of iron chelators and gallium nitrate against Acinetobacter baumannii. Antimicrob Agents Chemother 56:5397–5400. CrossRefGoogle Scholar
  22. Ding P, Schous CE, Miller MJ (2008) Design and synthesis of a novel protected mixed ligand siderophore. Tetrahedron Lett 49:2306–2310. CrossRefGoogle Scholar
  23. Dumas Z, Ross-Gillespie A, Kümmerli R (2013) Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments. Proc Biol Sci 1:280. CrossRefGoogle Scholar
  24. Ellermann M, Arthur JC (2017) Siderophore-mediated iron acquisition and modulation of host-bacterial interactions. Free Radic Biol Med 105:68–78. CrossRefGoogle Scholar
  25. Faraldo-Gomez JD, Sansom MS (2003) Acquisition of siderophores in gram-negative bacteria. Nat Rev Mol Cell Biol 4:105–116. CrossRefGoogle Scholar
  26. Ferguson AD, Braun V, Fiedler HP, Coulton JW, Diederichs K, Welte W (2000) Crystal structure of the antibiotic albomycin in complex with the outer membrane transporter FhuA. Protein Sci 9:956–963. CrossRefGoogle Scholar
  27. Ferreras JA, Ryu J-S, Di Lello F, Tan DS, Quadri LEN (2005) Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis. Nat Chem Biol 1:29–32. CrossRefGoogle Scholar
  28. Fischbach MA, Walsh CT (2009) Antibiotics for emerging pathogens. Science 325:1089–1093. CrossRefGoogle Scholar
  29. Fukushima T, Kawabata H, Nakamura T, Iwao H, Nakajima A, Miki M, Sakai T, Sawaki T, Fujita Y, Tanaka M, Masaki Y, Hirose Y, Umehara H (2011) Iron chelation therapy with deferasirox induced complete remission in a patient with chemotherapy-resistant acute monocytic leukemia. Anticancer Res 31:1741–1744Google Scholar
  30. Fukushima T, Allred BE, Sia AK, Nichiporuk R, Andersen UN, Raymond KN (2013) Gram-positive siderophore-shuttle with iron-exchange from Fe-siderophore to apo-siderophore by Bacillus cereus YxeB. Proc Natl Acad Sci USA 110:13821–13826. CrossRefGoogle Scholar
  31. Ghosh A, Ghosh M, Niu C, Malouin F, Moellmann U, Miller MJ (1996) Iron transport-mediated drug delivery using mixed-ligand siderophore-beta-lactam conjugates. Chem Biol 3:1011–1019. CrossRefGoogle Scholar
  32. Ghosh M, Miller PA, Möllmann U, Claypool WD, Schroeder VA, Wolter WR, Suckow M, Yu H, Li S, Huang W, Zajicek J, Miller MJ (2017) Targeted antibiotic delivery: selective siderophore conjugation with daptomycin confers potent activity against multidrug resistant Acinetobacter baumannii both in vitro and in vivo. J Med Chem 60:4577–4583. CrossRefGoogle Scholar
  33. Glick R, Gilmour C, Tremblay J, Satanower S, Avidan O, Deziel E, Greenberg EP, Poole K, Banin E (2010) Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 192:2973–2980. CrossRefGoogle Scholar
  34. Gojo I, Tidwell ML, Greer J, Takebe N, Seiter K, Pochron MF, Johnson B, Sznol M, Karp JE (2007) Phase I and pharmacokinetic study of Triapine, a potent ribonucleotide reductase inhibitor, in adults with advanced hematologic malignancies. Leuk Res 31:1165–1173. CrossRefGoogle Scholar
  35. Gokarn K, Sarangdhar V, Pal RB (2017) Effect of microbial siderophores on mammalian non-malignant and malignant cell lines. BMC Complement Altern Med 17:145. CrossRefGoogle Scholar
  36. Granato ET, Kümmerli R (2017) The path to re-evolve cooperation is constrained in Pseudomonas aeruginosa. BMC Evol Biol 17:214. CrossRefGoogle Scholar
  37. Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657. CrossRefGoogle Scholar
  38. Imperi F, Massai F, Facchini M, Frangipani E, Visaggio D, Leoni L, Bragonzi A, Visca P (2013) Repurposing the antimycotic drug flucytosine for suppression of Pseudomonas aeruginosa pathogenicity. Proc Natl Acad Sci USA 110:7458–7463. CrossRefGoogle Scholar
  39. Javvadi S, Pandey SS, Mishra A, Pradhan BB, Chatterjee S (2018) Bacterial cyclic β-(1,2)-glucans sequester iron to protect against iron-induced toxicity. EMBO Rep 19:172–186. CrossRefGoogle Scholar
  40. Jiang XP, Elliott RL, Head JF (2010) Manipulation of iron transporter genes results in the suppression of human and mouse mammary adenocarcinomas. Anticancer Res 30:759–765Google Scholar
  41. Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK (2007) The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest 117:877–888. CrossRefGoogle Scholar
  42. Kang D, Kirienko NV (2017) High-throughput genetic screen reveals that early attachment and biofilm formation are necessary for full Pyoverdine production by Pseudomonas aeruginosa. Front Microbiol 8:1–15. CrossRefGoogle Scholar
  43. Khan A, Singh P, Srivastava A (2018) Synthesis, nature and utility of universal iron chelator—Siderophore: a review. Microbiol Res 212–213:103–111. CrossRefGoogle Scholar
  44. Krewulak KD, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochim Biophys Acta 1778:1781–1804. CrossRefGoogle Scholar
  45. Kurtjak M, Vukomanovic M, Kramer L, Suvorov D (2016) Biocompatible nano-gallium/hydroxyapatite nanocomposite with antimicrobial activity. J Mater Sci Mater Med 27:170. CrossRefGoogle Scholar
  46. Lamb AL (2015) Breaking a pathogen’s iron will: inhibiting siderophore production as an antimicrobial strategy. Biochim Biophys Acta 1854:1054–1070. CrossRefGoogle Scholar
  47. Lui GY, Obeidy P, Ford SJ, Tselepis C, Sharp DM, Jansson PJ, Kalinowsk DS, Kovacevic Z, Lovejoy DB, Richardson DR (2013) The iron chelator, deferasirox, as a novel strategy for cancer treatment: oral activity against human lung tumor xenografts and molecular mechanism of action. Mol Pharmacol 83:179–190. CrossRefGoogle Scholar
  48. Miao J, Chen L, Wang J, Wang W, Chen D, Li L, Li B, Deng Y, Xu Z (2017) Current methodologies on genotyping for nosocomial pathogen methicillin-resistant Staphylococcus aureus (MRSA). Microb Pathog 107:17–28. CrossRefGoogle Scholar
  49. Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451. CrossRefGoogle Scholar
  50. Mike LA, Smith SN, Summer CA, Eaton KA, Mobley HL (2016) Siderophore vaccine conjugates protect against uropathogenic Escherichia coli urinary tract infection. Proc Natl Acad Sci USA 113:13468–13473. CrossRefGoogle Scholar
  51. Miller MJ, Zhu H, Xu Y, Wu C, Walz AJ, Vergne A, Roosenberg JM, Moraski G, Minnick AA, McKee-Dolence J, Hu J, Fennell K, Kurt Dolence E, Dong L, Franzblau S, Malouin F, Möllmann U (2009) Utilization of microbial iron assimilation processes for the development of new antibiotics and inspiration for the design of new anticancer agents. Biometals 22:61–75. CrossRefGoogle Scholar
  52. Miller MJ, Walz AJ, Zhu H, Wu C, Moraski G, Möllmann U, Tristani EM, Crumbliss AL, Ferdig MT, Checkley L, Edwards RL, Boshoff HI (2011) Design, synthesis, and study of a mycobactin-artemisinin conjugate that has selective and potent activity against tuberculosis and malaria. J Am Chem Soc 133:2076–2079. CrossRefGoogle Scholar
  53. Mills B, Bradley M, Dhaliwal K (2016) Optical imaging of bacterial infections. Clin Transl Imaging 4:163–174. CrossRefGoogle Scholar
  54. Milner SJ, Seve A, Snelling AM, Thomas GH, Kerr KG, Routledge A, Duhme-Klair AK (2013) Staphyloferrin A as siderophore-component in fluoroquinolone-based Trojan horse antibiotics. Org Biomol Chem 11:3461–3468. CrossRefGoogle Scholar
  55. Mollmann U, Heinisch L, Bauernfeind A, Kohler T, Ankel-Fuchs D (2009) Siderophores as drug delivery agents: application of the “Trojan Horse” strategy. Biometals 22:615–624. CrossRefGoogle Scholar
  56. Moreau-Marquis S, O’Toole GA, Stanton BA (2009) Tobramycin and FDA-approved iron chelators eliminate Pseudomonas aeruginosa biofilms on cystic fibrosis cells. Am J Respir Cell Mol Biol 41:305–313. CrossRefGoogle Scholar
  57. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726. CrossRefGoogle Scholar
  58. Noël S, Guillon L, Schalk IJ, Mislin GLA (2011) Synthesis of fluorescent probes based on the Pyochelin siderophore scaffold. Org Lett 13:844–847. CrossRefGoogle Scholar
  59. Noinaj N, Guillier M, Barnard TJ, Buchanan SK (2010) TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64:43–60. CrossRefGoogle Scholar
  60. Noulsri E, Richardson DR, Lerdwana S, Fucharoen S, Yamagishi T, Kalinowski DS, Pattanapanyasat K (2009) Antitumor activity and mechanism of action of the iron chelator, Dp44mT, against leukemic cells. Am J Hematol 84:170–176. CrossRefGoogle Scholar
  61. Olakanmi O, Kesavalu B, Pasula R, Abdalla MY, Schlesinger LS, Britigan BE (2013) Gallium nitrate is efficacious in murine models of tuberculosis and inhibits key bacterial Fe-dependent enzymes. Antimicrob Agents Chemother 57:6074–6080. CrossRefGoogle Scholar
  62. Ouchetto H, Dias M, Mornet R, Lesuisse E, Camadro JM (2005) A new route to trihydroxamate-containing artificial siderophores and synthesis of a new fluorescent probe. Bioorg Med Chem 13:1799–1803. CrossRefGoogle Scholar
  63. Page MGP (2013) Siderophore conjugates. Ann N Y Acad Sci 1277:115–126. CrossRefGoogle Scholar
  64. Page MGP, Dantier C, Desarbre E (2010) In vitro properties of BAL30072, a novel siderophore sulfactam with activity against multiresistant Gram-Negative bacilli. Antimicrob Agents Chemother 54:2291–2302. CrossRefGoogle Scholar
  65. Peleg AY, Hooper DC (2010) Hospital-acquired infections due to Gram-Negative bacteria. N Engl J Med 362:1804–1813. CrossRefGoogle Scholar
  66. Petrik M, Franssen GM, Haas H, Laverman P, Hörtnagl C, Schrettl M, Helbok A, Lass-Flörl C, Decristoforo C (2012) Preclinical evaluation of two 68 Ga-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging. Eur J Nucl Med Mol Imaging 39:1175–1183. CrossRefGoogle Scholar
  67. Petrik M, Zhai C, Haas H, Decristoforo C (2017) Siderophores for molecular imaging applications. Clin Transl Imaging 5:15–27. CrossRefGoogle Scholar
  68. Petrik M, Umlaufova E, Raclavsky V, Palyzova A, Havlicek V, Haas H, Novy Z, Dolezal D, Hajduch M, Decristoforo C (2018) Imaging of Pseudomonas aeruginosa infection with Ga-68 labelled pyoverdine for positron emission tomography. Sci Rep 8:15698. CrossRefGoogle Scholar
  69. Pramanik A, Braun V (2006) Albomycin uptake via a ferric hydroxamate transport system of Streptococcus pneumoniae R6. J Bacteriol 188:3878–3886. CrossRefGoogle Scholar
  70. Qiu KJ, Lin WJ, Zhou FY, Nan HQ, Wang BL, Li L, Lin JP, Zheng YF, Liu YH (2014) Ti–Ga binary alloys developed as potential dental materials. Mater Sci Eng C Mater Biol Appl 34:474–483. CrossRefGoogle Scholar
  71. Raad I, Chatzinikolaou I, Chaiban G, Hanna H, Hachem R, Dvorak T, Cook G, Costerton W (2003) In vitro and ex vivo activities of minocycline and EDTA against microorganisms embedded in biofilm on catheter surfaces. Antimicrob Agents Chemother 47:3580–3585. CrossRefGoogle Scholar
  72. Raymond KN, Dertz EA, Kim SS (2003) Enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci USA 100:3584–3588. CrossRefGoogle Scholar
  73. Ribeiro M, Simões M (2019) Siderophores: a novel approach to fight antimicrobial resistance, In: Arora D, Sharma C, Jaglan S, Lichtfouse E (eds) Pharmaceuticals from microbes. Environmental Chemistry for a Sustainable World, vol 28. Springer Nature, Cham, Switzerland, pp 99–120. ISBN 978-3-030-01881-8. Google Scholar
  74. Roosenberg JM 2nd, Lin YM, Lu Y, Miller MJ (2000) Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Curr Med Chem 7:159–197. CrossRefGoogle Scholar
  75. Russo TA, Page MG, Beanan JM, Olson R, Hujer AM, Hujer KM, Jacobs M, Bajaksouzian S, Endimiani A, Bonomo RA (2011) In vivo and in vitro activity of the siderophore monosulfactam BAL30072 against Acinetobacter baumannii. J Antimicrob Chemother 66:867–873. CrossRefGoogle Scholar
  76. Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res Int 23:3984–3999. CrossRefGoogle Scholar
  77. Schalk IJ, Mislin GLA (2017) Bacterial iron uptake pathways: gates for the import of bactericide compounds. J Med Chem 60:4573–4576. CrossRefGoogle Scholar
  78. Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854. CrossRefGoogle Scholar
  79. Signore A, Glaudemans AW (2011) The molecular imaging approach to image infections and inflammation by nuclear medicine techniques. Ann Nucl Med 25:681–700. CrossRefGoogle Scholar
  80. Simões M (2011) Antimicrobial strategies effective against infectious bacterial biofilms. Curr Med Chem 18:2129–2145. CrossRefGoogle Scholar
  81. Singh PK, Parsek MR, Greenberg EP, Welsh MJ (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417:552–555. CrossRefGoogle Scholar
  82. Song S, Christova T, Perusini S, Alizadeh S, Bao RY, Miller BW, Hurren R, Jitkova Y, Gronda M, Isaac M, Joseph B, Subramaniam R, Aman A, Chau A, Hogge DE, Weir SJ, Kasper J, Schimmer AD, Al-awar R, Wrana JL (2011) Attisano L (2011) Wnt inhibitor screen reveals iron dependence of β-catenin signaling in cancers. Cancer Res 71:7628–7639. CrossRefGoogle Scholar
  83. Szebesczyk A, Olshvang E, Shanzer A, Carver PL, Gumienna-Kontecka E (2016) Harnessing the power of fungal siderophores for the imaging and treatment of human diseases. Coord Chem Rev 327–328:84–109. CrossRefGoogle Scholar
  84. Torti SV, Torti FM, Whitman SP, Brechbiel MW, Park G, Planalp RP (1998) Tumor cell cytotoxicity of a novel metal chelator. Blood 92:1384–1389CrossRefGoogle Scholar
  85. Tripathi A et al (2014) Baulamycins A and B, broad-spectrum antibiotics identified as inhibitors of siderophore biosynthesis in Staphylococcus aureus and Bacillus anthracis. J Am Chem Soc 136:1579–1586. CrossRefGoogle Scholar
  86. Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15:22–30. CrossRefGoogle Scholar
  87. Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647. CrossRefGoogle Scholar
  88. Whitnall M, Howard J, Ponka P, Richardson DR (2006) A class of iron chelators with a wide spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics. Proc Natl Acad Sci USA 103:14901–14906. CrossRefGoogle Scholar
  89. Yamasaki T, Terai S (2011) Sakaida I (2011) Deferoxamine for advanced hepatocellular carcinoma. N Engl J Med 365:576–578. CrossRefGoogle Scholar
  90. Youard ZA, Wenner N, Reimmann C (2011) Iron acquisition with the natural siderophore enantiomers pyochelin and enantio-pyochelin in Pseudomonas species. Biometals 24:513–522. CrossRefGoogle Scholar
  91. Zhang C, Zhang F (2015) Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities. Protein Cell 6:88–100. CrossRefGoogle Scholar
  92. Zheng T, Nolan EM (2014) Enterobactin-mediated delivery of β-lactam antibiotics enhances antibacterial activity against pathogenic Escherichia coli. J Am Chem Soc 136:9677–9691. CrossRefGoogle Scholar
  93. Zumla A, Rao M, Wallis RS, Kaufmann SH, Rustomjee R, Mwaba P, Vilaplana C, Yeboah-Manu D, Chakaya J, Ippolito G, Azhar E, Hoelscher M, Maeurer M (2016) Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. Lancet Infect Dis 16:e47–e63. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.LEPABE – Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e EnergiaFaculdade de Engenharia da, Universidade do PortoPortoPortugal

Personalised recommendations