Advertisement

Environmental Chemistry Letters

, Volume 17, Issue 4, pp 1447–1469 | Cite as

Biochar-derived heterogeneous catalysts for biodiesel production

  • Muthusamy Balajii
  • Subramaniapillai NijuEmail author
Review
  • 111 Downloads

Abstract

Population increase, urbanization and industrialization induce a drastic need for energy. Actually, fossil fuel resources are heavily exploited to meet the energy demand and result in the emission of greenhouse gases. Alternatively, biodiesel is a renewable fuel produced by transesterification of biomass lipidic feedstocks. Biodiesel is a renewable fuel that can replace fossil diesel. Short-chain alcohols and efficient catalysts are required for biodiesel production. For instance, biochar can be used as a heterogeneous catalyst for biodiesel production owing to its high surface area and porosity. Biochar is a low-cost, carbon-rich material produced by pyrolysis of plant biomass. Here, we review the production, activation, and application of biochar, with focus on characteristics of biochar-derived catalysts, such as surface chemistry, thermal stability, total acidity or basicity, structural morphology, and elemental composition. We also present the developments of biochar-based catalysts from various biomass sources for biodiesel production.

Keywords

Biomass Pyrolysis Carbonization Biochar 

Notes

Acknowledgements

SN is grateful to SERB-DST, New Delhi, India, for Early Career Research Award (ECR/2015/000036), and MB is thankful to SERB-DST for the award of Junior Research Fellowship (JRF).

References

  1. Abukhadra MR, Dardir FM, Shaban M et al (2018) Spongy Ni/Fe carbonate-fluorapatite catalyst for efficient conversion of cooking oil waste into biodiesel. Environ Chem Lett 16:665–670.  https://doi.org/10.1007/s10311-017-0695-2 CrossRefGoogle Scholar
  2. Ahmad J, Rashid U, Patuzzi F et al (2018) Synthesis of char-based acidic catalyst for methanolysis of waste cooking oil: an insight into a possible valorization pathway for the solid by-product of gasification. Energy Convers Manag 158:186–192.  https://doi.org/10.1016/j.enconman.2017.12.059 CrossRefGoogle Scholar
  3. Ahmed MB, Zhou JL, Ngo HH, Guo W (2016) Insight into biochar properties and its cost analysis. Biomass Bioenerg 84:76–86.  https://doi.org/10.1016/j.biombioe.2015.11.002 CrossRefGoogle Scholar
  4. Batista L do N, Da Silva VF, Pissurno ÉCG et al (2015) Formation of toxic hexanal, 2-heptenal and 2,4-decadienal during biodiesel storage and oxidation. Environ Chem Lett 13:353–358.  https://doi.org/10.1007/s10311-015-0511-9 CrossRefGoogle Scholar
  5. Bora AP, Dhawane SH, Anupam K, Halder G (2018) Biodiesel synthesis from Mesua ferrea oil using waste shell derived carbon catalyst. Renew Energy 121:195–204.  https://doi.org/10.1016/j.renene.2018.01.036 CrossRefGoogle Scholar
  6. Cha JS, Park SH, Jung SC et al (2016) Production and utilization of biochar: a review. J Ind Eng Chem 40:1–15.  https://doi.org/10.1016/j.jiec.2016.06.002 CrossRefGoogle Scholar
  7. Chen L, Li G, Shen K et al (2018) High cadmium adsorption on nanoscale zero-valent iron coated Eichhornia crassipes biochar. Environ Chem Lett.  https://doi.org/10.1007/s10311-018-0811-y CrossRefGoogle Scholar
  8. de Vries SC (2008) The bio-fuel debate and fossil energy use in palm oil production: a critique of Reijnders and Huijbregts 2007. J Clean Prod 16:1926–1927.  https://doi.org/10.1016/j.jclepro.2008.01.009 CrossRefGoogle Scholar
  9. Dehkhoda AM, West AH, Ellis N (2010) Biochar based solid acid catalyst for biodiesel production. Appl Catal A Gen 382:197–204.  https://doi.org/10.1016/j.apcata.2010.04.051 CrossRefGoogle Scholar
  10. Dong T, Gao D, Miao C et al (2015) Two-step microalgal biodiesel production using acidic catalyst generated from pyrolysis-derived bio-char. Energy Convers Manag 105:1389–1396.  https://doi.org/10.1016/j.enconman.2015.06.072 CrossRefGoogle Scholar
  11. Fadhil AB, Aziz AM, Al-Tamer MH (2016) Biodiesel production from Silybum marianum L. seed oil with high FFA content using sulfonated carbon catalyst for esterification and base catalyst for transesterification. Energy Convers Manag 108:255–265.  https://doi.org/10.1016/j.enconman.2015.11.013 CrossRefGoogle Scholar
  12. Gao P, Yao D, Qian Y et al (2018) Factors controlling the formation of persistent free radicals in hydrochar during hydrothermal conversion of rice straw. Environ Chem Lett 16:1463–1468.  https://doi.org/10.1007/s10311-018-0757-0 CrossRefGoogle Scholar
  13. González ME, Cea M, Reyes D et al (2017) Functionalization of biochar derived from lignocellulosic biomass using microwave technology for catalytic application in biodiesel production. Energy Convers Manag 137:165–173.  https://doi.org/10.1016/j.enconman.2017.01.063 CrossRefGoogle Scholar
  14. Gude VG, Martinez-Guerra E (2018) Green chemistry with process intensification for sustainable biodiesel production. Environ Chem Lett 16:327–341.  https://doi.org/10.1007/s10311-017-0680-9 CrossRefGoogle Scholar
  15. Gunarathne V, Ashiq A, Ramanayaka S et al (2019) Biochar from municipal solid waste for resource recovery and pollution remediation. Environ Chem Lett.  https://doi.org/10.1007/s10311-019-00866-0 CrossRefGoogle Scholar
  16. Hajilary N, Rezakazemi M, Shirazian S (2018) Biofuel types and membrane separation. Environ Chem Lett.  https://doi.org/10.1007/s10311-018-0777-9 CrossRefGoogle Scholar
  17. Helwani Z, Othman MR, Aziz N et al (2009) Solid heterogeneous catalysts for transesterification of triglycerides with methanol: a review. Appl Catal A Gen 363:1–10.  https://doi.org/10.1016/j.apcata.2009.05.021 CrossRefGoogle Scholar
  18. How HG, Teoh YH, Masjuki HH, Kalam MA (2012) Impact of coconut oil blends on particulate-phase PAHs and regulated emissions from a light duty diesel engine. Energy 48:500–509.  https://doi.org/10.1016/j.energy.2012.10.009 CrossRefGoogle Scholar
  19. Inyang MI, Gao B, Yao Y et al (2016) A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit Rev Environ Sci Technol 46:406–433.  https://doi.org/10.1080/10643389.2015.1096880 CrossRefGoogle Scholar
  20. Ishak S, Kamari A (2018) Biodiesel from black soldier fly larvae grown on restaurant kitchen waste. Environ Chem Lett.  https://doi.org/10.1007/s10311-018-00844-y CrossRefGoogle Scholar
  21. Jung J-M, Lee S-R, Lee J et al (2017) Biodiesel synthesis using chicken manure biochar and waste cooking oil. Bioresour Technol 244:810–815.  https://doi.org/10.1016/j.biortech.2017.08.044 CrossRefGoogle Scholar
  22. Klasson KT, Ledbetter CA, Uchimiya M, Lima IM (2013) Activated biochar removes 100% dibromochloropropane from field well water. Environ Chem Lett 11:271–275.  https://doi.org/10.1007/s10311-012-0398-7 CrossRefGoogle Scholar
  23. Kosheleva RI, Mitropoulos AC, Kyzas GZ (2018) Synthesis of activated carbon from food waste. Environ Chem Lett.  https://doi.org/10.1007/s10311-018-0817-5 CrossRefGoogle Scholar
  24. Kostić MD, Bazargan A, Stamenković OS et al (2016) Optimization and kinetics of sunflower oil methanolysis catalyzed by calcium oxide-based catalyst derived from palm kernel shell biochar. Fuel 163:304–313.  https://doi.org/10.1016/j.fuel.2015.09.042 CrossRefGoogle Scholar
  25. Lee J, Kim KH, Kwon EE (2017) Biochar as a Catalyst. Renew Sustain Energy Rev 77:70–79.  https://doi.org/10.1016/j.rser.2017.04.002 CrossRefGoogle Scholar
  26. Lee J, Sarmah AK, Kwon EE (2018) Production and formation of biochar. In: Biochar from biomass and waste: fundamentals and applications, pp 3–18. https://books.google.co.in/books?isbn=0128117303 CrossRefGoogle Scholar
  27. Lehnen DR, Guzatto R, Defferrari D et al (2014) Solvent-free biodiesel epoxidation. Environ Chem Lett 12:335–340.  https://doi.org/10.1007/s10311-013-0448-9 CrossRefGoogle Scholar
  28. Lei H, Chen X, Guan S et al (2011a) Hydrophobic calcium carbonate: an option for the value-added conversion of wastes resulting from biodiesel production. Environ Chem Lett 9:217–221.  https://doi.org/10.1007/s10311-009-0267-1 CrossRefGoogle Scholar
  29. Lei H, Wang Z, Zhao X et al (2011b) A simple and promising route for biodiesel production from low-quality lipids. Environ Chem Lett 9:279–283.  https://doi.org/10.1007/s10311-010-0280-4 CrossRefGoogle Scholar
  30. Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87:1083–1095.  https://doi.org/10.1016/j.apenergy.2009.10.006 CrossRefGoogle Scholar
  31. Li M, Chen D, Zhu X (2013) Preparation of solid acid catalyst from rice husk char and its catalytic performance in esterification. Chin J Catal 34:1674–1682.  https://doi.org/10.1016/S1872-2067(12)60634-2 CrossRefGoogle Scholar
  32. Li M, Zheng Y, Chen Y, Zhu X (2014) Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk. Bioresour Technol 154:345–348.  https://doi.org/10.1016/j.biortech.2013.12.070 CrossRefGoogle Scholar
  33. Liu W-J, Jiang H, Yu H-Q (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115:12251–12285.  https://doi.org/10.1021/acs.chemrev.5b00195 CrossRefGoogle Scholar
  34. Lokman IM, Rashid U, Taufiq-Yap YH (2015) Production of biodiesel from palm fatty acid distillate using sulfonated-glucose solid acid catalyst: characterization and optimization. Chin J Chem Eng 23:1857–1864.  https://doi.org/10.1016/j.cjche.2015.07.028 CrossRefGoogle Scholar
  35. Lyu, H and Gong, Y and Gurav, R and Tang J (2016) Potential application of biochar for bioremediation of contaminated systems. In: Biochar application. Elsevier, pp 221–246.  https://doi.org/10.1016/B978-0-12-803433-0.00009-6 CrossRefGoogle Scholar
  36. Meher LC, Vidya Sagar D, Naik SN (2006) Technical aspects of biodiesel production by transesterification—a review. Renew Sustain Energy Rev 10:248–268.  https://doi.org/10.1016/j.rser.2004.09.002 CrossRefGoogle Scholar
  37. Mofijur M, Atabani AE, Masjuki HH et al (2013) A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: a comparative evaluation. Renew Sustain Energy Rev 23:391–404.  https://doi.org/10.1016/j.rser.2013.03.009 CrossRefGoogle Scholar
  38. Ng JH, Ng HK, Gan S (2012) Characterisation of engine-out responses from a light-duty diesel engine fuelled with palm methyl ester (PME). Appl Energy 90:58–67.  https://doi.org/10.1016/j.apenergy.2011.01.028 CrossRefGoogle Scholar
  39. Nuradila D, Ghani WAWAK, Alias AB (2017) Palm kernel shell-derived biochar and catalyst for biodiesel production. Malays J Anal Sci 21:197–203.  https://doi.org/10.17576/mjas-2017-2101-23 CrossRefGoogle Scholar
  40. Palash SM, Kalam MA, Masjuki HH et al (2013) Impacts of biodiesel combustion on NOx emissions and their reduction approaches. Renew Sustain Energy Rev 23:473–490.  https://doi.org/10.1016/j.rser.2013.03.003 CrossRefGoogle Scholar
  41. Pua F, Fang Z, Zakaria S et al (2011) Direct production of biodiesel from high-acid value Jatropha oil with solid acid catalyst derived from lignin. Biotechnol Biofuels 4:56.  https://doi.org/10.1186/1754-6834-4-56 CrossRefGoogle Scholar
  42. Qian K, Kumar A, Zhang H et al (2015) Recent advances in utilization of biochar. Renew Sustain Energy Rev 42:1055–1064.  https://doi.org/10.1016/j.rser.2014.10.074 CrossRefGoogle Scholar
  43. Reyman D, Saiz Bermejo A, Ramirez Uceda I, Rodriguez Gamero M (2014) A new FTIR method to monitor transesterification in biodiesel production by ultrasonication. Environ Chem Lett 12:235–240.  https://doi.org/10.1007/s10311-013-0440-4 CrossRefGoogle Scholar
  44. Romann T, Kurig H, Thomberg T et al (2016) Microporous–mesoporous carbons for energy storage synthesized by activation of carbonaceous material by zinc chloride, potassium hydroxide or mixture of them. J Power Sources 326:624–634.  https://doi.org/10.1016/j.jpowsour.2016.04.038 CrossRefGoogle Scholar
  45. Semwal S, Arora AK, Badoni RP, Tuli DK (2011) Biodiesel production using heterogeneous catalysts. Bioresour Technol 102:2151–2161.  https://doi.org/10.1016/j.biortech.2010.10.080 CrossRefGoogle Scholar
  46. Shahabuddin M, Kalam MA, Masjuki HH et al (2012) An experimental investigation into biodiesel stability by means of oxidation and property determination. Energy 44:616–622.  https://doi.org/10.1016/j.energy.2012.05.032 CrossRefGoogle Scholar
  47. Shahabuddin M, Liaquat AM, Masjuki HH et al (2013) Ignition delay, combustion and emission characteristics of diesel engine fueled with biodiesel. Renew Sustain Energy Rev 21:623–632.  https://doi.org/10.1016/j.rser.2013.01.019 CrossRefGoogle Scholar
  48. Sharma S (2018) Biochar for carbon sequestration: Bioengineering for sustainable environment. In: Omics technologies and bio-engineering. Elsevier, pp 365–385.  https://doi.org/10.1016/B978-0-12-815870-8.00020-6 CrossRefGoogle Scholar
  49. Siddiqui MTH, Nizamuddin S, Baloch HA et al (2018) Synthesis of magnetic carbon nanocomposites by hydrothermal carbonization and pyrolysis. Environ Chem Lett 16:821–844.  https://doi.org/10.1007/s10311-018-0724-9 CrossRefGoogle Scholar
  50. Tan PQ, Hu ZY, Lou DM, Li ZJ (2012) Exhaust emissions from a light-duty diesel engine with Jatropha biodiesel fuel. Energy 39:356–362.  https://doi.org/10.1016/j.energy.2012.01.002 CrossRefGoogle Scholar
  51. Tang J, Zhu W, Kookana R, Katayama A (2013a) Characteristics of biochar and its application in remediation of contaminated soil. J Biosci Bioeng 116:653–659.  https://doi.org/10.1016/j.jbiosc.2013.05.035 CrossRefGoogle Scholar
  52. Tang Y, Gu X, Chen G (2013b) 99% yield biodiesel production from rapeseed oil using benzyl bromide-CaO catalyst. Environ Chem Lett 11:203–208.  https://doi.org/10.1007/s10311-013-0403-9 CrossRefGoogle Scholar
  53. Tang ZE, Lim S, Pang YL et al (2018) Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: state of the art and fundamental review. Renew Sustain Energy Rev 92:235–253.  https://doi.org/10.1016/j.rser.2018.04.056 CrossRefGoogle Scholar
  54. Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sustain Energy Rev 55:467–481.  https://doi.org/10.1016/j.rser.2015.10.122 CrossRefGoogle Scholar
  55. Tsang DCW, Zhang S, Ok YS et al (2017) A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresour Technol 246:254–270.  https://doi.org/10.1016/j.biortech.2017.06.163 CrossRefGoogle Scholar
  56. Ushakov S, Valland H, Æsøy V (2013) Combustion and emissions characteristics of fish oil fuel in a heavy-duty diesel engine. Energy Convers Manag 65:228–238.  https://doi.org/10.1016/j.enconman.2012.08.009 CrossRefGoogle Scholar
  57. Wang S, Yuan H, Wang Y, Shan R (2017a) Transesterification of vegetable oil on low cost and efficient meat and bone meal biochar catalysts. Energy Convers Manag 150:214–221.  https://doi.org/10.1016/j.enconman.2017.08.020 CrossRefGoogle Scholar
  58. Wang S, Zhao C, Shan R et al (2017b) A novel peat biochar supported catalyst for the transesterification reaction. Energy Convers Manag 139:89–96.  https://doi.org/10.1016/j.enconman.2017.02.039 CrossRefGoogle Scholar
  59. Weber K, Quicker P (2018) Properties of biochar. Fuel 217:240–261.  https://doi.org/10.1016/j.fuel.2017.12.054 CrossRefGoogle Scholar
  60. Xiao L, Liu F, Xu H et al (2019) Biochar promotes methane production at high acetate concentrations in anaerobic soils. Environ Chem Lett.  https://doi.org/10.1007/s10311-019-00863-3 CrossRefGoogle Scholar
  61. Xu M, Wu J, Yang G et al (2018) Biochar addition to soil highly increases P retention and decreases the risk of phosphate contamination of waters. Environ Chem Lett.  https://doi.org/10.1007/s10311-018-0802-z CrossRefGoogle Scholar
  62. Zhang Z, Zhu Z, Shen B, Liu L (2019) Insights into biochar and hydrochar production and applications: a review. Energy 171:581–598.  https://doi.org/10.1016/j.energy.2019.01.035 CrossRefGoogle Scholar
  63. Zou Q, An W, Wu C et al (2018) Red mud-modified biochar reduces soil arsenic availability and changes bacterial composition. Environ Chem Lett 16:615–622.  https://doi.org/10.1007/s10311-017-0688-1 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyPSG College of TechnologyCoimbatoreIndia

Personalised recommendations