Advertisement

Clay mineral adsorbents for heavy metal removal from wastewater: a review

  • Shiqing Gu
  • Xiaonan Kang
  • Lan Wang
  • Eric Lichtfouse
  • Chuanyi Wang
Review
  • 60 Downloads

Abstract

Heavy metal pollution such as water contamination by Pb, Hg, Cu, Cd and Cr ions is induced by rapid urbanization and industrialization and is a major threat to human health. One of the most efficient processes to clean contaminated water is adsorption. Adsorbents such as clay minerals and modified clays are efficient for the removal of metal ions from wastewater. This manuscript reviews current research in heavy metal adsorption by clay minerals such as halloysite, bentonite, montmorillonite, vermiculite and attapulgite, from 2013 to 2017, and highlights the main adsorption mechanisms. The structure, composition and synthesis of various clay minerals and modified clays are presented.

Keywords

Heavy metal removal Clays and modified clays Adsorption properties Environmental remediation 

Notes

Acknowledgements

The authors greatly appreciate financial support from the National Nature Science Foundation of China (Grant Nos. U1403295 and U1703129), and the CAS/SAFEA International Partnership Program for Creative Research Teams.

References

  1. Ahmaruzzaman M (2011) Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv Colloid Interface Sci 166(1):36–59.  https://doi.org/10.1016/j.cis.2011.04.005 CrossRefGoogle Scholar
  2. Ajmal M, Rao RAK, Ahmad R, Ahmad J, Rao LAK (2001) Removal and recovery of heavy metals from electroplating wastewater by using Kyanite as an adsorbent. J Hazard Mater 87(1–3):127–137.  https://doi.org/10.1016/s0304-3894(01)00234-5 CrossRefGoogle Scholar
  3. Anadao P, Hildebrando EA, Pajolli ILR, Pereira KRD, Wiebeck H, Diaz FRV (2011) Montmorillonite/carbon nanocomposites prepared from sucrose for catalytic applications. Appl Clay Sci 53(2):288–296.  https://doi.org/10.1016/j.clay.2011.04.022 CrossRefGoogle Scholar
  4. Bakandritsos A, Steriotis T, Petridis D (2004) High surface area montmorillonite-carbon composites and derived carbons. Chem Mater 16(8):1551–1559.  https://doi.org/10.1021/cm0350030 CrossRefGoogle Scholar
  5. Bandeira LC, Calefi PS, Ciuffi KJ, de Faria EH, Nassar EJ, Vicente MA, Trujillano R (2012) Preparation of composites of laponite with alginate and alginic acid polysaccharides. Polym Int 61(7):1170–1176.  https://doi.org/10.1002/pi.4196 CrossRefGoogle Scholar
  6. Baydemir G, Andac M, Bereli N, Say R, Denizli A (2007) Selective removal of bilirubin from human plasma with bilirubin-imprinted particles. Ind Eng Chem Res 46(9):2843–2852.  https://doi.org/10.1021/ie0611249 CrossRefGoogle Scholar
  7. Bedoui K, Bekri-Abbes I, Srasra E (2008) Removal of cadmium(II) from aqueous solution using pure smectite and Lewatite S 100: the effect of time and metal concentration. Desalination 223(1):269–273.  https://doi.org/10.1016/j.desal.2007.02.078 CrossRefGoogle Scholar
  8. Bhattacharyya KG, Gupta SS (2008) Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interface Sci 140(2):114–131.  https://doi.org/10.1016/j.cis.2007.12.008 CrossRefGoogle Scholar
  9. Blanco C, González F, Pesquera C, Benito I, Mendioroz S, Pajares JA (1989) Differences between one aluminic palygorskite and another magnesic by infrared spectroscopy. Spectrosc Lett 22(6):659–673.  https://doi.org/10.1080/00387018908053926 CrossRefGoogle Scholar
  10. Bosco SMD, Jimenez RS, Vignado C, Fontana J, Geraldo B, Figueiredo FCA, Mandelli D, Carvalho WA (2006) Removal of Mn(II) and Cd(II) from wastewaters by natural and modified clays. Adsorption 12(2):133–146.  https://doi.org/10.1007/s10450-006-0375-1 CrossRefGoogle Scholar
  11. Bradl HB (2004) Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interface Sci 277(1):1–18.  https://doi.org/10.1016/j.jcis.2004.04.005 CrossRefGoogle Scholar
  12. Brindley GW, Robinson K (1945) Structure of Kaolinite. Nature 156(3970):661–662.  https://doi.org/10.1038/156661b0 CrossRefGoogle Scholar
  13. Cao J, Cao H, Zhu Y, Wang S, Qian D, Chen G, Sun M, Huang W (2016) Rapid and effective removal of Cu2+ from aqueous solution using novel chitosan and laponite-based nanocomposite as adsorbent. Polymers 9(12):5.  https://doi.org/10.3390/polym9010005 CrossRefGoogle Scholar
  14. Catalano JG, Brown GE (2005) Uranyl adsorption onto montmorillonite: evaluation of binding sites and carbonate complexation. Geochim Cosmochim Acta 69(12):2995–3005.  https://doi.org/10.1016/j.gca.2005.01.025 CrossRefGoogle Scholar
  15. Chakraborty A, Deva D, Sharma A, Verma N (2011) Adsorbents based on carbon microfibers and carbon nanofibers for the removal of phenol and lead from water. J Colloid Interface Sci 359(1):228–239.  https://doi.org/10.1016/j.jcis.2011.03.057 CrossRefGoogle Scholar
  16. Chen GH (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38(1):11–41.  https://doi.org/10.1016/j.seppur.2003.10.006 CrossRefGoogle Scholar
  17. Chen J, Blume HP, Beyer L (2000) Weathering of rocks induced by lichen colonization: a review. Catena 39(2):121–146.  https://doi.org/10.1016/s0341-8162(99)00085-5 CrossRefGoogle Scholar
  18. Chen YY, Wang J, Shi GT, Sun XJ, Chen ZL, Xu SY (2011) Human health risk assessment of lead pollution in atmospheric deposition in Baoshan District, Shanghai. Environ Geochem Health 33(6):515–523.  https://doi.org/10.1007/s10653-010-9368-9 CrossRefGoogle Scholar
  19. Chen WF, Zhu DQ, Zheng SR, Chen W (2014) Catalytic effects of functionalized carbon nanotubes on dehydrochlorination of 1,1,2,2-tetrachloroethane. Environ Sci Technol 48(7):3856–3863.  https://doi.org/10.1021/es405683d CrossRefGoogle Scholar
  20. Choudhury A, Kennedy IR (2005) Nitrogen fertilizer losses from rice soils and control of environmental pollution problems. Commun Soil Sci Plant Anal 36(11–12):1625–1639.  https://doi.org/10.1081/css-200059104 CrossRefGoogle Scholar
  21. Darder M, Colilla M, Ruiz-Hitzky E (2005) Chitosan–clay nanocomposites: application as electrochemical sensors. Appl Clay Sci 28(1):199–208.  https://doi.org/10.1016/j.clay.2004.02.009 CrossRefGoogle Scholar
  22. de Lapparent J (1936) Formula and schematic structure of attapulgite. C R Hebd Seances Acad Sci 202:1728–1731Google Scholar
  23. de Paiva LB, Morales AR, Diaz FRV (2008) Organoclays: properties, preparation and applications. Appl Clay Sci 42(1–2):8–24.  https://doi.org/10.1016/j.clay.2008.02.006 CrossRefGoogle Scholar
  24. Demir-Cakan R, Baccile N, Antonietti M, Titirici MM (2009) Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid. Chem Mater 21(3):484–490.  https://doi.org/10.1021/cm802141h CrossRefGoogle Scholar
  25. Deng YJ, Dixon JB, White GN (2006) Bonding mechanisms and conformation of poly(ethylene oxide)-based surfactants in interlayer of smectite. Colloid Polym Sci 284(4):347–356.  https://doi.org/10.1007/s00396-005-1388-0 CrossRefGoogle Scholar
  26. Dhal B, Thatoi HN, Das NN, Pandey BD (2013) Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Hazard Mater 250:272–291.  https://doi.org/10.1016/j.jhazmat.2013.01.048 CrossRefGoogle Scholar
  27. Du ML, Guo BC, Jia DM (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59(5):574–582.  https://doi.org/10.1002/pi.2754 CrossRefGoogle Scholar
  28. Duman O, Tunç S (2009) Electrokinetic and rheological properties of Na-bentonite in some electrolyte solutions. Microporous Mesoporous Mater 117(1):331–338.  https://doi.org/10.1016/j.micromeso.2008.07.007 CrossRefGoogle Scholar
  29. Duquesne E, Moins S, Alexandre M, Dubois P (2007) How can nanohybrids enhance polyester/sepiolite nanocomposite properties? Macromol Chem Phys 208:2542CrossRefGoogle Scholar
  30. Elom NI, Entwistle J, Dean JR (2014) Human health risk from Pb in urban street dust in northern UK cities. Environ Chem Lett 12(1):209–218.  https://doi.org/10.1007/s10311-013-0436-0 CrossRefGoogle Scholar
  31. El-Sherbiny S, Morsy FA, Hassan MS, Mohamed HF (2015) Enhancing Egyptian kaolinite via calcination and dealumination for application in paper coating. J Coat Technol Res 12(4):739–749.  https://doi.org/10.1007/s11998-015-9672-5 CrossRefGoogle Scholar
  32. Erdem E, Karapinar N, Donat R (2004) The removal of heavy metal cations by natural zeolites. J Colloid Interface Sci 280(2):309–314.  https://doi.org/10.1016/j.jcis.2004.08.028 CrossRefGoogle Scholar
  33. Feng XB, Qiu GL (2008) Mercury pollution in Guizhou, Southwestern China: an overview. Sci Total Environ 400(1–3):227–237.  https://doi.org/10.1016/j.scitotenv.2008.05.040 CrossRefGoogle Scholar
  34. Feng M, Wang Z, Dionysiou DD, Sharma VK (2018a) Metal-mediated oxidation of fluoroquinolone antibiotics in water: a review on kinetics, transformation products, and toxicity assessment. J Hazard Mater 344:1136–1154.  https://doi.org/10.1016/j.jhazmat.2017.08.067 CrossRefGoogle Scholar
  35. Feng M, Zhang P, Zhou HC, Sharma VK (2018b) Water-stable metal-organic frameworks for aqueous removal of heavy metals and radionuclides: a review. Chemosphere 209:783–800.  https://doi.org/10.1016/j.chemosphere.2018.06.114 CrossRefGoogle Scholar
  36. Frenkel M (1974) Surface acidity of montmorillonites. Clays Clay Miner 22(5–6):435–441.  https://doi.org/10.1346/ccmn.1974.0220510 CrossRefGoogle Scholar
  37. Fu FL, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418.  https://doi.org/10.1016/j.jenvman.2010.11.011 CrossRefGoogle Scholar
  38. Galan E (1996) Properties and applications of palygorskite-sepiolite clays. Clay Miner 31(4):443–453.  https://doi.org/10.1180/claymin.1996.031.4.01 CrossRefGoogle Scholar
  39. Gale JD, Cheetham AK, Jackson RA, Catlow CRA, Thomas JM (1990) Computing the structure of pillared clays. Adv Mater 2(10):487–490.  https://doi.org/10.1002/adma.19900021010 CrossRefGoogle Scholar
  40. Gao ZM, Bandosz TJ, Zhao ZB, Han M, Qiu JS (2009) Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J Hazard Mater 167(1–3):357–365.  https://doi.org/10.1016/j.jhazmat.2009.01.050 CrossRefGoogle Scholar
  41. Gomes PC, Fontes MPF, da Silva AG, Mendonca ED, Netto AR (2001) Selectivity sequence and competitive adsorption of heavy metals by Brazilian soils. Soil Sci Soc Am J 65(4):1115–1121.  https://doi.org/10.2136/sssaj2001.6541115x CrossRefGoogle Scholar
  42. Gruner JW (1932) The crystal structure of Kaolinite. ZKri 83(1/2):75–88Google Scholar
  43. Gu S, Wang L, Mao X, Yang L, Wang C (2018) Selective adsorption of Pb(II) from aqueous solution by triethylenetetramine-grafted polyacrylamide/vermiculite. Materials.  https://doi.org/10.3390/ma11040514 CrossRefGoogle Scholar
  44. Guangyan T, Yuru K, Bin M, Aiqin W (2014) Attapulgite modified with silane coupling agent for phosphorus adsorption and deep bleaching of refined palm oil. Adsorpt Sci Technol 32(1):37–48.  https://doi.org/10.1260/0263-6174.32.1.37 CrossRefGoogle Scholar
  45. He MC, Wang XQ, Wu FC, Fu ZY (2012) Antimony pollution in China. Sci Total Environ 421:41–50.  https://doi.org/10.1016/j.scitotenv.2011.06.009 CrossRefGoogle Scholar
  46. Hendricks SB (1942) Lattice structure of clay minerals and some properties of clays. JG 50(3):276–290.  https://doi.org/10.1086/625051 CrossRefGoogle Scholar
  47. Hendricks SB, Jefferson ME (1938) Crystal structure of vermiculites and mixed vermiculite-chlorites. Am Miner 23(12):851–862Google Scholar
  48. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465.  https://doi.org/10.1016/S0032-9592(98)00112-5 CrossRefGoogle Scholar
  49. Hong H, Jiang W-T, Zhang X, Tie L, Li Z (2008) Adsorption of Cr(VI) on STAC-modified rectorite. Appl Clay Sci 42(1):292–299.  https://doi.org/10.1016/j.clay.2008.01.015 CrossRefGoogle Scholar
  50. Huang X, Hou X, Song F, Zhao J, Zhang L (2016) Facet-dependent Cr(VI) adsorption of hematite nanocrystals. Environ Sci Technol 50(4):1964–1972.  https://doi.org/10.1021/acs.est.5b05111 CrossRefGoogle Scholar
  51. Jakob A, Stucki S, Struis R (1996) Complete heavy metal removal from fly ash by heat treatment: influence of chlorides an evaporation rates. Environ Sci Technol 30(11):3275–3283.  https://doi.org/10.1021/es960059z CrossRefGoogle Scholar
  52. Jean J, Perrodin Y, Pivot C, Trepo D, Perraud M, Droguet J, Tissot-Guerraz F, Locher F (2012) Identification and prioritization of bioaccumulable pharmaceutical substances discharged in hospital effluents. J Environ Manage 103:113–121.  https://doi.org/10.1016/j.jenvman.2012.03.005 CrossRefGoogle Scholar
  53. Jiang M-Q, Jin X-Y, Lu X-Q, Chen Z-L (2010) Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination 252(1):33–39.  https://doi.org/10.1016/j.desal.2009.11.005 CrossRefGoogle Scholar
  54. Kadirvelu K, Faur-Brasquet C, Le Cloirec P (2000) Removal of Cu(II), Pb(II), and Ni(II) by adsorption onto activated carbon cloths. Langmuir 16(22):8404–8409.  https://doi.org/10.1021/la0004810 CrossRefGoogle Scholar
  55. Kapoor A, Viraraghavan T (1995) Fungal biosorption: an alternative treatment option for heavy metal bearing wastewaters—a review. Bioresour Technol 53(3):195–206.  https://doi.org/10.1016/0960-8524(95)00072-1 CrossRefGoogle Scholar
  56. Karimi L, Salem A (2011) The role of bentonite particle size distribution on kinetic of cation exchange capacity. J Ind Eng Chem 17(1):90–95.  https://doi.org/10.1016/j.jiec.2010.12.002 CrossRefGoogle Scholar
  57. Kasgoz H, Durmus A, Kasgoz A (2008) Enhanced swelling and adsorption properties of AAm-AMPSNa/clay hydrogel nanocomposites for heavy metal ion removal. Polym Adv Technol 19(3):213–220.  https://doi.org/10.1002/pat.999 CrossRefGoogle Scholar
  58. Keng PS, Lee SL, Ha ST, Hung YT, Ong ST (2014) Removal of hazardous heavy metals from aqueous environment by low-cost adsorption materials. Environ Chem Lett 12(1):15–25.  https://doi.org/10.1007/s10311-013-0427-1 CrossRefGoogle Scholar
  59. Kiani G (2014) High removal capacity of silver ions from aqueous solution onto Halloysite nanotubes. Appl Clay Sci 90:159–164.  https://doi.org/10.1016/j.clay.2014.01.010 CrossRefGoogle Scholar
  60. Kobielska PA, Howarth AJ, Farha OK, Nayak S (2018) Metal-organic frameworks for heavy metal removal from water. Coord Chem Rev 358:92–107.  https://doi.org/10.1016/j.ccr.2017.12.010 CrossRefGoogle Scholar
  61. Kosobucki P, Kruk M, Buszewski B (2008) Immobilization of selected heavy metals in sewage sludge by natural zeolites. Bioresour Technol 99(13):5972–5976.  https://doi.org/10.1016/j.biortech.2007.10.023 CrossRefGoogle Scholar
  62. Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40(20):3671–3682.  https://doi.org/10.1016/j.watres.2006.08.027 CrossRefGoogle Scholar
  63. Lenarda M, Ganzerla R, Storaro L, Enzo S, Zanoni R (1994) Bifunctional catalysts from pillared clays-vapor-phase conversion of propene to acetone catalyzed by iron and ruthenium containing aluminum pillared bentonites. J Mol Catal 92(2):201–215.  https://doi.org/10.1016/0304-5102(94)00064-6 CrossRefGoogle Scholar
  64. Leroueil S, Tavenas F, Brucy F, Larochelle P, Roy M (1979) Behavior of de-structured natural clays. J Geotech Eng Div ASCE 105(6):759–778Google Scholar
  65. Li YH, Di ZC, Ding J, Wu DH, Luan ZK, Zhu YQ (2005) Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res 39(4):605–609.  https://doi.org/10.1016/j.watres.2004.11.004 CrossRefGoogle Scholar
  66. Liu P (2007) Polymer modified clay minerals: a review. Appl Clay Sci 38(1–2):64–76.  https://doi.org/10.1016/j.clay.2007.01.004 CrossRefGoogle Scholar
  67. Luo P, Zhao YF, Zhang B, Liu JD, Yang Y, Liu JF (2010) Study on the adsorption of neutral red from aqueous solution onto halloysite nanotubes. Water Res 44(5):1489–1497.  https://doi.org/10.1016/j.watres.2009.10.042 CrossRefGoogle Scholar
  68. Luo P, Zhang J-S, Zhang B, Wang J-H, Zhao Y-F, Liu J-D (2011) Preparation and characterization of silane coupling agent modified halloysite for Cr(VI) removal. Ind Eng Chem Res 50(17):10246–10252.  https://doi.org/10.1021/ie200951n CrossRefGoogle Scholar
  69. Lv PZ, Liu CZ, Rao ZH (2017) Review on clay mineral-based form-stable phase change materials: preparation, characterization and applications. Renew Sustain Energy Rev 68:707–726.  https://doi.org/10.1016/j.rser.2016.10.014 CrossRefGoogle Scholar
  70. Ma PC, Kim J-K, Tang BZ (2006) Functionalization of carbon nanotubes using a silane coupling agent. Carbon 44(15):3232–3238.  https://doi.org/10.1016/j.carbon.2006.06.032 CrossRefGoogle Scholar
  71. Matlock MM, Howerton BS, Atwood DA (2002) Chemical precipitation of heavy metals from acid mine drainage. Water Res 36(19):4757–4764.  https://doi.org/10.1016/s0043-1354(02)00149-5 CrossRefGoogle Scholar
  72. Matur BM, Davou BJ (2007) Comparative larvicidal property of leaf extract of Chromolaena odorata L (Composidae) and chlopyrifos (organophosphorus compound) on Simulium larvae. Biomed Environ Sci 20(4):313–316Google Scholar
  73. Mavrov V, Stamenov S, Todorova E, Chmiel H, Erwe T (2006) New hybrid electrocoagulation membrane process for removing selenium from industrial wastewater. Desalination 201(1–3):290–296.  https://doi.org/10.1016/j.desal.2006.06.005 CrossRefGoogle Scholar
  74. Mockovciakova A, Orolinova Z, Skvarla J (2010) Enhancement of the bentonite sorption properties. J Hazard Mater 180(1–3):274–281.  https://doi.org/10.1016/j.jhazmat.2010.04.027 CrossRefGoogle Scholar
  75. Murray HH (1991) Overview: clay mineral applications. Appl Clay Sci 5(5):379–395.  https://doi.org/10.1016/0169-1317(91)90014-Z CrossRefGoogle Scholar
  76. Musyoka SM, Ngila JC, Mamba BB (2013) Remediation studies of trace metals in natural and treated water using surface modified biopolymer nanofibers. PCE 66:45–50.  https://doi.org/10.1016/j.pce.2013.09.002 CrossRefGoogle Scholar
  77. Nasser MS, Onaizi SA, Hussein IA, Saad MA, Al-Marri MJ, Benamor A (2016) Intercalation of ionic liquids into bentonite: swelling and rheological behaviors. Colloids Surf Physicochem Eng Aspects 507:141–151.  https://doi.org/10.1016/j.colsurfa.2016.08.006 CrossRefGoogle Scholar
  78. Navarro R, Guzman J, Saucedo I, Revilla J, Guibal E (2007) Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes. Waste Manage (Oxford) 27(3):425–438.  https://doi.org/10.1016/j.wasman.2006.02.002 CrossRefGoogle Scholar
  79. Ngah WSW, Hanafiah M (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour Technol 99(10):3935–3948.  https://doi.org/10.1016/j.biortech.2007.06.011 CrossRefGoogle Scholar
  80. Nidheesh PV, Zhou M, Oturan MA (2018) An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere 197:210–227.  https://doi.org/10.1016/j.chemosphere.2017.12.195 CrossRefGoogle Scholar
  81. Nordberg GF (2009) Historical perspectives on cadmium toxicology. Toxicol Appl Pharmacol 238(3):192–200.  https://doi.org/10.1016/j.taap.2009.03.015 CrossRefGoogle Scholar
  82. Odoma AN, Obaje NG, Omada JI, Idakwo S, Erbacher J (2013) Paleoclimate reconstruction during Mamu Formation (Cretaceous) based on clay mineral distributions. IOSQ J Appl Geol Geophy 1(5):40–46CrossRefGoogle Scholar
  83. Orozco-Guareño E, Santiago-Gutiérrez F, Morán-Quiroz JL, Hernandez-Olmos SL, Soto V, Cruz WDL, Manríquez R, Gomez-Salazar S (2010) Removal of Cu(II) ions from aqueous streams using poly(acrylic acid-co-acrylamide) hydrogels. J Colloid Interface Sci 349(2):583–593.  https://doi.org/10.1016/j.jcis.2010.05.048 CrossRefGoogle Scholar
  84. Pan D, Fan Q, Ding K, Li P, Lu Y, Yu T, Xu J, Wu W (2011) The sorption mechanisms of Th(IV) on attapulgite. Sci China Chem 54(7):1138–1147.  https://doi.org/10.1007/s11426-011-4279-x CrossRefGoogle Scholar
  85. Panuccio MR, Sorgonà A, Rizzo M, Cacco G (2009) Cadmium adsorption on vermiculite, zeolite and pumice: batch experimental studies. J Environ Manage 90(1):364–374.  https://doi.org/10.1016/j.jenvman.2007.10.005 CrossRefGoogle Scholar
  86. Parise M, Qiriazi P, Sala S (2004) Natural and anthropogenic hazards in karst areas of Albania. NHESS 4(4):569–581Google Scholar
  87. Perez M, Torrades F, Domenech X, Peral J (2002) Fenton and photo-fenton oxidation of textile effluents. Water Res 36(11):2703–2710.  https://doi.org/10.1016/s0043-1354(01)00506-1 CrossRefGoogle Scholar
  88. Reddad Z, Gerente C, Andres Y, Le Cloirec P (2002) Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environ Sci Technol 36(9):2067–2073.  https://doi.org/10.1021/es0102989 CrossRefGoogle Scholar
  89. Reichle WT (1986) Anionic clay-minerals. Chem Tech 16(1):58–63Google Scholar
  90. Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10–11):1629–1652.  https://doi.org/10.1016/j.progpolymsci.2013.05.008 CrossRefGoogle Scholar
  91. Rijsberman FR (2006) Water scarcity: Fact or fiction? Agric Water Manage 80(1):5–22.  https://doi.org/10.1016/j.agwat.2005.07.001 CrossRefGoogle Scholar
  92. Ruiz-Hitzky E, Darder M, Alcantara ACS, Wicklein B, Aranda P (2005) Recent advances on fibrous clay-based nanocomposites. Organ Inorgan Hybrid Nanomater 267:39–86.  https://doi.org/10.1007/12_2014_283 CrossRefGoogle Scholar
  93. Sari A, Tuzen M, Citak D, Soylak M (2007) Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay. J Hazard Mater 149(2):283–291.  https://doi.org/10.1016/j.jhazmat.2007.03.078 CrossRefGoogle Scholar
  94. Shirozu H, Bailey SW (1966) Crystal structure of a 2-layer Mg-vermiculite. Am Miner 51(7):1124Google Scholar
  95. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984). Pure Appl Chem 57(4):603–619.  https://doi.org/10.1351/pac198557040603 CrossRefGoogle Scholar
  96. Srimurali M, Pragathi A, Karthikeyan J (1998) A study on removal of fluorides from drinking water by adsorption onto low-cost materials. Environ Pollut 99(2):285–289.  https://doi.org/10.1016/s0269-7491(97)00129-2 CrossRefGoogle Scholar
  97. Srinivasan R (2011) Advances in application of natural clay and its composites in removal of biological, organic, and inorganic contaminants from drinking water. Adv Mater Sci Eng.  https://doi.org/10.1155/2011/872531 CrossRefGoogle Scholar
  98. Stankovic S, Kalaba P, Stankovic AR (2014) Biota as toxic metal indicators. Environ Chem Lett 12(1):63–84.  https://doi.org/10.1007/s10311-013-0430-6 CrossRefGoogle Scholar
  99. Strelko V, Malik DJ, Streat M (2004) Interpretation of transition metal sorption behavior by oxidized active carbons and other adsorbents. Sep Sci Technol 39(8):1885–1905.  https://doi.org/10.1081/ss-120030791 CrossRefGoogle Scholar
  100. Uddin MK (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J 308:438–462.  https://doi.org/10.1016/j.cej.2016.09.029 CrossRefGoogle Scholar
  101. Vadivelan V, Kumar KV (2005) Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J Colloid Interface Sci 286(1):90–100.  https://doi.org/10.1016/j.jcis.2005.01.007 CrossRefGoogle Scholar
  102. Valente JS, Tzompantzi F, Prince J, Cortez JGH, Gomez R (2009) Adsorption and photocatalytic degradation of phenol and 2,4 dichlorophenoxiacetic acid by Mg–Zn–Al layered double hydroxides. Appl Catal B Environ 90(3–4):330–338.  https://doi.org/10.1016/j.apcatb.2009.03.019 CrossRefGoogle Scholar
  103. Velde B (1995) Composition and mineralogy of clay minerals. In: Velde B (ed) Origin and mineralogy of clays: clays and the environment. Springer, Berlin, pp 8–42CrossRefGoogle Scholar
  104. Wang XH, Wang CY (2016) Chitosan-poly(vinyl alcohol)/attapulgite nanocomposites for copper(II) ions removal: pH dependence and adsorption mechanisms. Colloids Surf Physicochem Eng Asp 500:186–194.  https://doi.org/10.1016/j.colsurfa.2016.04.034 CrossRefGoogle Scholar
  105. Wang JL, Xu LJ (2012) Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit Rev Environ Sci Technol 42(3):251–325.  https://doi.org/10.1080/10643389.2010.507698 CrossRefGoogle Scholar
  106. Wang ZX, Chen JQ, Chai LY, Yang ZH, Huang SH, Zheng Y (2011) Environmental impact and site-specific human health risks of chromium in the vicinity of a ferro-alloy manufactory. China J Hazard Mater 190(1–3):980–985.  https://doi.org/10.1016/j.jhazmat.2011.04.039 CrossRefGoogle Scholar
  107. Wang XH, Yang L, Zhang JP, Wang CY, Li QY (2014) Preparation and characterization of chitosan-poly(vinyl alcohol)/bentonite nanocomposites for adsorption of Hg(II) ions. Chem Eng J 251:404–412.  https://doi.org/10.1016/j.cej.2014.04.089 CrossRefGoogle Scholar
  108. White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets - iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182(1):49–84.  https://doi.org/10.1111/j.1469-8137.2008.02738.x CrossRefGoogle Scholar
  109. Winchell AN (1945) Montmorillonite. Am Miner 30(7–8):510–518Google Scholar
  110. Xie Y, Qian D, Wu D, Ma X (2011) Magnetic halloysite nanotubes/iron oxide composites for the adsorption of dyes. Chem Eng J 168(2):959–963.  https://doi.org/10.1016/j.cej.2011.02.031 CrossRefGoogle Scholar
  111. Xiong ZT, Wang H (2005) Copper toxicity and bioaccumulation in Chinese cabbage (Brassica pekinensis Rupr.). Environ Toxicol 20(2):188–194.  https://doi.org/10.1002/tox.20094 CrossRefGoogle Scholar
  112. Xu SH, Boyd SA (1994) Cation-exchange chemistry of hexadecyltrimethylammonium in a subsoil containing vermiculite. Soil Sci Soc Am J 58(5):1382–1391.  https://doi.org/10.2136/sssaj1994.03615995005800050015x CrossRefGoogle Scholar
  113. Xue A, Zhou S, Zhao Y, Lu X, Han P (2011) Effective NH2-grafting on attapulgite surfaces for adsorption of reactive dyes. J Hazard Mater 194:7–14.  https://doi.org/10.1016/j.jhazmat.2011.06.018 CrossRefGoogle Scholar
  114. Yuan G, Theng B, Churchman J, Gates W (2013) Clays and clay minerals for pollution control. In: Developments in clay science. pp 587–644.  https://doi.org/10.1016/B978-0-08-098259-5.00021-4 Google Scholar
  115. Zhang J, Chen H, Wang A (2005) Study on superabsorbent composite. III. Swelling behaviors of polyacrylamide/attapulgite composite based on acidified attapulgite and organo-attapulgite. Eur Polym J 41(10):2434–2442.  https://doi.org/10.1016/j.eurpolymj.2005.03.022 CrossRefGoogle Scholar
  116. Zhang M, Cushing BL, O’Connor CJ (2008) Synthesis and characterization of monodisperse ultra-thin silica-coated magnetic nanoparticles. Nanotechnology.  https://doi.org/10.1088/0957-4484/19/8/085601 CrossRefGoogle Scholar
  117. Zhang R, Chen CL, Li J, Wang XK (2015) Preparation of montmorillonite@carbon composite and its application for U(VI) removal from aqueous solution. Appl Surf Sci 349:129–137.  https://doi.org/10.1016/j.apsusc.2015.04.222 CrossRefGoogle Scholar
  118. Zhu KC, Duan YY, Wang F, Gao P, Jia HZ, Ma CY, Wang CY (2017a) Silane-modified halloysite/Fe3O4 nanocomposites: simultaneous removal of Cr(VI) and Sb(V) and positive effects of Cr(VI) on Sb(V) adsorption. Chem Eng J 311:236–246.  https://doi.org/10.1016/j.cej.2016.11.101 CrossRefGoogle Scholar
  119. Zhu KC, Jia HZ, Wang F, Zhu YQ, Wang CY, Ma CY (2017b) Efficient removal of Pb(II) from aqueous solution by modified montmorillonite/carbon composite: equilibrium, kinetics, and thermodynamics. J Chem Eng Data 62(1):333–340.  https://doi.org/10.1021/acs.jced.6b00676 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special EnvironmentsChinese Academy of SciencesÜrümqiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Aix Marseille Univ, CNRS, IRD, INRA, Coll FranceCEREGEAix en ProvenceFrance

Personalised recommendations