Environmental Chemistry Letters

, Volume 17, Issue 1, pp 393–408 | Cite as

Hemp-based adsorbents for sequestration of metals: a review

  • Nadia Morin-Crini
  • Sonia Loiacono
  • Vincent Placet
  • Giangiacomo Torri
  • Corina Bradu
  • Mirjana Kostić
  • Cesare Cosentino
  • Gilles Chanet
  • Bernard Martel
  • Eric Lichtfouse
  • Grégorio CriniEmail author


With the increasing focus on renewable materials and sustainability issues, the development of non-conventional materials from natural resources and possessing complexing properties is currently an area of extensive research due to their potential applications in biosorption processes for pollutant removal. Among them, the hemp plant (Cannabis sativa), an annual high yielding industrial crop grown for its fibres and seeds, is one of the most promising materials for biosorption of metal ions from diluted waste streams. In this review, an extensive list of hemp-based biosorbent literature has been compiled and discussed. After a brief description of hemp and its properties and applications, the review gives a general overview of liquid–solid biosorption processes for metal sequestration from aqueous solutions onto hemp-based materials.


Hemp Metals Sequestration Biosorption Mechanisms 


  1. Amaducci S (2005) Hemp production in Italy. J Ind Hemp 10:109–115CrossRefGoogle Scholar
  2. Amaducci S, Scordia D, Liu FH, Zhang Q, Guo H, Testa G, Cosentino SL (2015) Key cultivation techniques for hemp in Europe and China. Ind Crops Prod 68:2–16. CrossRefGoogle Scholar
  3. Balintova M, Holub M, Stevulova N, Cigasova J, Tesarcikova M (2014) Sorption in acidic environment—biosorbents in comparison with commercial adsorbents. Chem Eng Trans 39:625–630. Google Scholar
  4. Berefield LD, Judkins JF, Weand BL (1982) Process chemistry for water and wastewater treatment. Prentice-Hall, New-JerseyGoogle Scholar
  5. Blackburn RS (2004) Natural polysaccharides and their interactions with dye molecules: applications in effluent treatment. Environ Sci Technol 38:4905–4909. CrossRefGoogle Scholar
  6. Bouloc P (2013) Hemp: industrial production and uses. CABI, OxfordshireCrossRefGoogle Scholar
  7. Bugnet J, Morin-Crini N, Cosentino C, Chanet G, Winterton P, Crini G (2017a) Hemp decontamination of poly-metallic aqueous solutions. Environ Eng Manage J 16:535–542CrossRefGoogle Scholar
  8. Bugnet J, Morin-Crini N, Chanet G, Cosentino C, Crini G (2017b) Du chanvre pour dépolluer des eaux polycontaminées en métaux. In: Morin-Crini N, Crini G (eds) Eaux industrielles contaminées, Chapter XI. PUFC, Besançon, pp 323–340Google Scholar
  9. Cassano R, Trombino S, Ferrarelli T, Nicoletta FP, Mauro MV, Giraldi C, Picci N (2013) Hemp fiber (Cannabis sativa L.) derivatives with antibacterial and chelating properties. Cellulose 20:547–557. CrossRefGoogle Scholar
  10. Citterio S, Santagostino A, Fumagalli P, Prato N, Ranalli P, Sgorbati S (2003) Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant Soil 256:243–252. CrossRefGoogle Scholar
  11. Cooney DO (ed) (1999) Adsorption design for wastewater treatment. Lewis Publishers, Boca RatonGoogle Scholar
  12. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70. CrossRefGoogle Scholar
  13. Crini G (2006) Non-conventional low-cost adsorbents for dye removal. Bioresour Technol 97:1061–1085. CrossRefGoogle Scholar
  14. Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447. CrossRefGoogle Scholar
  15. Crini G, Badot PM (eds) (2010) Sorption processes and pollution. PUFC, BesançonGoogle Scholar
  16. Dąbrowski A (2001) Adsorption—From theory to practice. Adv Colloid Int Sci 93:135–224CrossRefGoogle Scholar
  17. Di Candilo M, Bonatti PM, Guidetti C, Focher B, Grippo C, Tamburini E, Mastromei G (2009) Effects of selected pectinolytic bacterial strains on water-retting of hemp and fibre properties. J Appl Microbiol 108:194–203. CrossRefGoogle Scholar
  18. Ho YS, Porter JF, McKay G (2002) Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water Air Soil Pollut 141:1–33CrossRefGoogle Scholar
  19. Keijsers ERP, Yılmaz G, van Dam JEG (2013) The cellulose resource matrix. Carbohydr Polym 93:9–21. CrossRefGoogle Scholar
  20. Khalaf MN (ed) (2016) Green polymers and environmental pollution control. CRC Press, OakvilleGoogle Scholar
  21. Kostić MM, Pejić BM, Asanovic KA, Aleksic VM, Skundric PD (2010) Effect of hemicelluloses and lignin on the sorption and electric properties of hemp fibres. Ind Crops Prod 32:169–174. CrossRefGoogle Scholar
  22. Kostić M, Vukčević M, Pejić B, Kalijadis A (2014) Hemp fibers: old fibers—new applications. In: Ibrahim Md Mondal H (ed) Textiles: history, properties and performance and applications. Nova Science Publishers Inc, New York, pp 399–446Google Scholar
  23. Kyzas GZ, Kostoglou M (2014) Green adsorbents for wastewaters: a critical review. Materials 7:333–364. CrossRefGoogle Scholar
  24. Kyzas GZ, Terzopoulou Z, Nikolaidis V, Alexopoulou E, Bikiaris DN (2015) Low-cost hemp biomaterials for nickel ions removal from aqueous solutions. J Mol Liq 209:209–218. CrossRefGoogle Scholar
  25. Le Troëdec M, Rachini A, Peyratout C, Rossignol S, Max E, Kaftan O, Fery A, Smith A (2011) Influence of chemical treatments on adhesion properties of hemp fibres. J Colloid Int Sci 356:303–310. CrossRefGoogle Scholar
  26. Liberalato D (2003) Prospect of hemp utilization in the European textile industry. Agroindustria 2(3):147–148Google Scholar
  27. Liu DHF, Liptak BG (eds) (2000) Wastewater treatment. CRC Press, Boca RatonGoogle Scholar
  28. Loiacono S, Morin-Crini N, Cosentino C, Torri G, Chanet G, Winterton P, Crini G (2017a) Simultaneous removal of Cd Co, Cu, Mn, Ni and Zn from synthetic solutions on a hemp-based felt: experimental design. J Appl Polym Sci 134:1–11. Google Scholar
  29. Loiacono S, Crini G, Martel B, Chanet G, Cosentino C, Raschetti M, Placet V, Torri G, Morin-Crini N (2017b) Simultaneous removal of Cd Co, Cu, Mn, Ni and Zn from synthetic solutions on a hemp-based felt. 2: chemical modification. J Appl Polym Sci 134:1–16. Google Scholar
  30. Loiacono S, Morin-Crini G, Cosentino C, Chanet G, Winterton P, Torri G, Crini G (2017c) La canapa: un material interessante per il trattamento delle acque contaminate da metalli. Chimica e Industria 2:8–12. Google Scholar
  31. Loiacono S, Crini G, Chanet G, Raschetti M, Placet V, Morin-Crini N (2018) Metals in aqueous solutions and real effluents: biosorption behavior of a hemp-based felt. J Chem Technol Biotechnol. Google Scholar
  32. Lupul I, Yperman J, Carleer R, Gryglewicz G (2015a) Adsorption of atrazine on hemp stem-based activated carbons with different surface chemistry. Adsorpt J Int Adsorpt Soc 21:489–498. CrossRefGoogle Scholar
  33. Lupul I, Yperman J, Carleer R, Gryglewicz G (2015b) Tailoring of porous texture of hemp stem-based activated carbon produced by phosphoric acid activation in steam atmosphere. J Porous Mater 22:283–289. CrossRefGoogle Scholar
  34. Manes M (1998) Activated carbon adsorption fundamentals. In: Meyers RA (ed) Encyclopedia of environmental analysis and remediation, vol 1. Wiley, New-York, pp 26–68Google Scholar
  35. McKay G (1996) Use of adsorbents for the removal of pollutants from wastewaters. CRC Press, Boca RatonGoogle Scholar
  36. McKay G, Al Duri B (1989) Prediction of multicomponent adsorption equilibrium data using empirical correlations. Chem Eng J 41:9–23CrossRefGoogle Scholar
  37. Michalak I, Chojnacka K, Witek-Krowiak A (2013) State of the art for the biosorption process—a review. Appl Biochem Biotechnol 170:1389–1416. CrossRefGoogle Scholar
  38. Morin-Crini N, Loiacono S, Placet V, Torri G, Bradu C, Kostić M, Cosentino C, Chanet G, Martel B, Lichtfouse É, Crini G (2018) Hemp-based materials for metal removal: a review. In: Crini G, Lichtfouse É (eds) Green adsorbents for pollutant removal—fundamentals and design, environmental chemistry for a sustainable world, vol 1. Springer, BerlinGoogle Scholar
  39. Muya FN, Sunday CE, Baker P, Iwuoha E (2016) Environmental remediation of heavy metal ions from aqueous solution through hydrogel adsorption: a critical review. Water Sci Technol 73:983–992. Google Scholar
  40. Okenicova L, Zemberyova M, Prochazkova S (2016) Biosorbents for solid-phase extraction of toxic elements in waters. Environ Chem Lett 14:67–77. CrossRefGoogle Scholar
  41. Oliveira LS, Franca AS (2008) Low cost adsorbents from agro-food wastes. In: Columbus F (ed) Food science and technology: new research. Nova Publishers, New-York, pp 1–39Google Scholar
  42. Păduraru C, Tofan L (2002) Equilibrium studies for the sorption of metal ions onto hemp. Cellulose Chem Technol 36:375–380Google Scholar
  43. Păduraru C, Tofan L (2008) Investigations on the possibility of natural hemp fibres use for Zn(II) removal from wastewaters. Environ Eng Manag J 7:687–693CrossRefGoogle Scholar
  44. Pejić BM, Vukčević MM, Kostić MP, Skundric PD (2009) Biosorption of heavy metal ions from aqueous solutions by short hemp fibres: effect of chemical composition. J Hazard Mater 164:146–153. CrossRefGoogle Scholar
  45. Pejić BM, Vukčević MM, Pajić-Lijaković ID, Laušević MD, Kostić MM (2011) Mathematical modeling of heavy metal ions (Cd2+, Zn2+and Pb2+) biosorption by chemically modified short hemp fibres. Chem Eng J 172:354–360. CrossRefGoogle Scholar
  46. Placet V, Meteau J, Froehly L, Salut R, Boubakar ML (2014) Investigation of the internal structure of hemp fibres using optical coherence tomography and focused ion beam transverse cutting. J Mater Sci 49:8317–8327. CrossRefGoogle Scholar
  47. Placet V, Day A, Beaugrand J (2017) The influence of unintended field retting on the physicochemical and mechanical properties of industrial hemp bast fibres. J Mater Sci 52:5759–5777. CrossRefGoogle Scholar
  48. Radovic LR, Moreno-Castilla C, Rivera-Utrilla J (2000) Carbon materials as adsorbents in aqueous solutions. Chem Phys Carbon 27:227–405Google Scholar
  49. Ramakrishna KR, Viraraghavan T (1997) Dye removal using low cost adsorbents. Water Sci Technol 36:189–196. CrossRefGoogle Scholar
  50. Ranalli P (1999) Advances in hemp research. Food Product Press, Binghamton. ISBN 9781560228721Google Scholar
  51. Ranalli P, Venturi G (2004) Hemp as a raw material for industrial applications. Euphytica 140:1–6. CrossRefGoogle Scholar
  52. Rehman MSU, Rashid N, Saif A, Mahmood T, Han JI (2013) Potential of bioenergy production from industrial hemp (Cannabis sativa): Pakistan perspective. Renew Sustain Energy Rev 18:154–164. CrossRefGoogle Scholar
  53. Rezić I (2013) Cellulosic fibres—biosorptive materials and indicators of heavy metal pollution. Microchem J 107:63–69CrossRefGoogle Scholar
  54. Rosas JM, Bedia J, Rodriguez-Mirasol J, Cordero T (2009) Hemp-derived activated carbon fibres by chemical activation with phosphoric acid. Fuel 88:19–26. CrossRefGoogle Scholar
  55. Salentijn EMJ, Zhang Q, Amaducci S, Yang M, Trindade LM (2015) New developments in fiber hemp (Cannabis sativa L.) breeding. Ind Crops Prod 68:32–41. CrossRefGoogle Scholar
  56. Shahzad A (2012) Hemp fiber and its composites—a review. J Compos Mater 46:973–986. CrossRefGoogle Scholar
  57. Sharma SK (ed) (2015) Green chemistry for dyes removal from wastewater. Scrivener Publishing LLC Wiley, BeverleyGoogle Scholar
  58. Sharma SK, Sanghi R (eds) (2012) Advances in water treatment and pollution prevention. Springer, DordrechtGoogle Scholar
  59. Stevulova N, Cigasova J, Estokova A, Terpakova E, Geffert A, Kacik F, Singovszka E, Holub M (2014) Properties and characterization of chemically modified hemp hurds. Materials 7:8131–8150. CrossRefGoogle Scholar
  60. Sun JJ, Gao JM, Hao XM, Cui XY, Yang Ma T (2013) Effects of air-phosphoric acid activation on pore structure and adsorption property of mesoporous carbon from hemp stem. In: Zheng L, Kuroda S, Liu H, Du B, Wei J, Zhao Y (eds) Advanced Materials Research, vol 821–822. Zürich, Scientific, pp 41–46. Google Scholar
  61. Tien C (1994) Adsorption calculations and modeling. Butterworth-Heinemann College, NewtonGoogle Scholar
  62. Tofan L, Păduraru C (1999) Removal of copper(II) ions in traces from waste waters by sorption on hemp modified with α-benzoinoxime. J Balkan Ecol 2:106–112Google Scholar
  63. Tofan L, Păduraru C (2000) The hemp—a new fibrous natural unconventional sorbent. Buletinul Institului Politechnic Iasi, Series of Chemie and Chemical Engineering, Tome XLVI (L) fascicule 3–4:113–118Google Scholar
  64. Tofan L, Păduraru C (2004) Sorption studies of Ag(I), Cd(II) and Pb(II) ions on sulphydryl hemp fibres. Croat Chem Acta 77:581–586Google Scholar
  65. Tofan L, Gherasim O, Păduraru C, Toma O (2001a) Hemp impregnated with α-benzoinoxime for removal of copper (II) pollutant ions. Scientific Annals of Al.I. Cuza University of Iasi. Section II a Genetics and Molecular Biology, Tome II, pp 81–85Google Scholar
  66. Tofan L, Păduraru C, Toma O (2001b) Hemp fibres impregnated with alizarine S as unconventional material for Cr(III) ions in technological systems. Scientific Annals of the State University of Moldavia Chisinau, Chisinau, pp 204–208Google Scholar
  67. Tofan L, Păduraru C, Volf I (2009) Concentration of cadmium (II) trace amounts from large volumes of aqueous samples of chemically modified hemp fibres. Sci Pap J Agron Ser 52:506–511Google Scholar
  68. Tofan L, Păduraru C, Volf I (2010a) Comparative study concerning the retention thermodynamics of some heavy metal ions on hemp fibres. Buletinul Institului Politechnic Iasi LVI (LX):137–145Google Scholar
  69. Tofan L, Păduraru C, Volf I, Balan C (2010b) Kinetic and thermodynamic profile of Pb(II) sorption by untreated hemp fibres. Sci Pap J Agron Ser 53:146–150Google Scholar
  70. Tofan L, Păduraru C, Volf I, Balan C (2010c) Removal of lead(II) from aqueous solution by sorption by on natural hemp fibres. Sci Pap J Agron Ser 53:150–153Google Scholar
  71. Tofan L, Teodosiu C, Păduraru C, Wenkert R (2013) Cobalt(II) removal from aqueous solutions by natural hemp fibres: batch and fixed-bed columns studies. Appl Surf Sci 285:33–39. CrossRefGoogle Scholar
  72. Tofan L, Păduraru C, Teodosiu C, Toma O (2015) Fixed bed columns study on the removal of chromium (III) ions from aqueous solutions by hemp fibres with improved sorption performance. Cellul Chem Technol 49:219–229Google Scholar
  73. Tofan L, Păduraru C, Toma O (2016a) Zinc remediation of aqueous solutions by natural hemp fibres: batch desorption/regeneration study. Des Water Treat 57:12644–12652. CrossRefGoogle Scholar
  74. Tofan L, Wenkert R, Păduraru C (2016b) Natural and waste materials as green sorbents for Cd(II) removal from aqueous effluents. Environ Eng Manag J 15:1049–1058CrossRefGoogle Scholar
  75. Treybal RE (1987) Mass transfer operations. McGraw-Hill, New YorkGoogle Scholar
  76. Vandenhove H, Van Hees M (2003) Fibre crops as alternative land use for radioactively contaminated arable land. J Environ Radioact 81:131–141. CrossRefGoogle Scholar
  77. Vijayaraghavan K, Balasubramanian R (2015) Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions. J Environ Manag 160:283–296. CrossRefGoogle Scholar
  78. Volesky B (1990) Biosorption of metals. CRC Press, Boca RatonGoogle Scholar
  79. Volesky B (2004) Sorption and biosorption. BV-Sorbex Inc, MontrealGoogle Scholar
  80. Vukčević M, Kalijadis A, Radisic M, Pejić B, Kostić M, Laušević Z, Laušević M (2012) Application of carbonized hemp fibres as a new solid-phase extraction sorbent for analysis of pesticides in water samples. Chem Eng J 211:224–232. Google Scholar
  81. Vukčević M, Pejić B, Laušević M, Pajić-Lijaković I, Kostić M (2014a) Influence of chemically modified short hemp fiber structure on biosorption process of Zn2+ ions from waste water. Fibres Polym 15:687–697. CrossRefGoogle Scholar
  82. Vukčević M, Pejić B, Kalijadis A, Pajić-Lijaković I, Kostić M, Laušević Z, Laušević M (2014b) Carbon materials from waste short hemp fibres as a sorbent for heavy metal ions—mathematical modeling of sorbent structure and ions transport. Chem Eng J 235:284–292. CrossRefGoogle Scholar
  83. Vukčević M, Kalijadis AM, Vasiljevic TM, Babic BM, Laušević ZV, Laušević MD (2015) Production of activated carbon derived from waste hemp (Cannabis sativa) fibres and its performance in pesticide adsorption. Microporous Mesoporous Mater 214:156–165. CrossRefGoogle Scholar
  84. Wang Y, Yang R, Li M, Zhao ZJ (2015) Hydrothermal preparation of highly porous carbon spheres from hemp (Cannabis sativa L.) stem hemicellulose for use in energy-related applications. Ind Crops Prod 65:216–226. CrossRefGoogle Scholar
  85. Wase J, Forster C (eds) (1997) Biosorbents for metal ions. Taylor & Francis, BristolGoogle Scholar
  86. Williams PT, Reed AR (2003) Pre-formed activated carbon matting derived from the pyrolysis of biomass natural fiber textile waste. J Anal Appl Pyrolysis 70:563–577CrossRefGoogle Scholar
  87. Williams PT, Reed AR (2004) High grade activated carbon matting derived from the chemical activation and pyrolysis of natural fibre textile waste. J Anal Appl Pyrolysis 71:971–986CrossRefGoogle Scholar
  88. Yang TR (ed) (2003) Adsorbents: fundamentals and applications. Wiley-Interscience, New JerseyGoogle Scholar
  89. Yang R, Liu GQ, Xu XH, Li M, Zhang JC, Hao XM (2011) Surface texture, chemistry and adsorption properties of acid blue 9 of hemp (Cannabis sativa L.) bast-based activated carbon fibres prepared by phosphoric acid activation. Biomass Bioenergy 35:437–445. CrossRefGoogle Scholar
  90. Yang R, Liu GQ, Li M, Zhang JC, Hao XM (2012) Preparation and N2, CO2 and H2 adsorption of super activated carbon derived from biomass source hemp (Cannabis sativa L.) stem. Microporous Mesoporous Mater 158:108–116. CrossRefGoogle Scholar
  91. Zhao MH, Xu Y, Zhang CS, Rong HW, Zeng GM (2016) New trends in removing heavy metals from wastewater. Appl Microbiol Biotechnol 100:6509–6518. CrossRefGoogle Scholar
  92. Zou XQ, El Fallah J, Goupil JM, Zhu GS, Valtchev V, Mintova S (2012) Green removal of aromatic organic pollutants from aqueous solutions with a zeolite-hemp composite. RSC Adv 2:3115–3122. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratoire Chrono-environnement, UMR 6249, UFR Sciences et TechniquesUniversité Bourgogne Franche-ComtéBesançonFrance
  2. 2.FEMTO-ST Institute, CNRS/UFC/ENSMM/UTBM, Department of Applied MechanicsBourgogne Franche-Comté UniversityBesançonFrance
  3. 3.Istituto di Chimica e Biochimica G. RonzoniMilanItaly
  4. 4.Research Center for Environmental Protection and Waste ManagementUniversity of BucharestBucharestRomania
  5. 5.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  6. 6.EurochanvreArc-les-GrayFrance
  7. 7.CNRS, INRA, ENSCL, UMR 8207, UMET - Unité Matériaux et TransformationsUniversité de LilleLilleFrance
  8. 8.Aix Marseille Univ, CNRS, IRD, INRA, Coll FranceCEREGEAix-en-ProvenceFrance

Personalised recommendations