Advertisement

Biofuel types and membrane separation

  • Nasibeh Hajilary
  • Mashallah Rezakazemi
  • Saeed Shirazian
Review
  • 88 Downloads

Abstract

Global warming induced by greenhouse gases is major issue worldwide. There is therefore a need to develop renewable sources of energy, such as biofuels. Here, we review the various types of biofuels such as biodiesel, bioethanol, biomethane, hydrotreated vegetable oils and fats, and lignocellulosic-based fuels. First, second, and third generations of biofuels are compared in terms of economics, environmental aspects and energy yield. Economically, raw materials account for 60–75% of the final price of produced biofuels. The high cost of biodiesel compared to the lower price of diesel fuel is a major challenge toward commercializing biodiesel production from vegetable oils. Environmentally, biofuels can reduce carbon emissions and are more biodegradable compared to fossil fuels. For instance, biodiesel and diesel fuels are degraded by 95% and 40%, respectively, during one month in water. Among liquid biofuels, biodiesel has the best energy yield, such that the amount of net biodiesel energy production is more than three times than that of diesel fuel. We also review membrane technologies for the purification and separation of biofuels such as bioethanol, biobutanol, biodiesel, and biogas. Commonly used membrane processes are ultrafiltration, microfiltration, nanofiltration, pervaporation, membrane distillation and reverse osmosis. Reverse osmosis is used for water treatment due to the very small pore size of membranes, which allow the water molecules to get through. Membrane bioreactors can be used for wastewater treatment with a combination of ultrafiltration and reverse osmosis. Ultrafiltration and nanofiltration membranes have applications in the production of biomass from olive mill wastewaters. Pervaporation and membrane distillation are efficient in the third generation of bioethanol production plants.

Keywords

Biofuels Biorefinery Bioenergy Membranes Sustainability 

References

  1. Ae O, Martin BH, Maria G (2017) Transport biofuels in global energy–economy modelling—a review of comprehensive energy systems assessment approaches. GCB Bioenergy 9:1168–1180.  https://doi.org/10.1111/gcbb.12431 CrossRefGoogle Scholar
  2. Atadashi IM, Aroua MK, Abdul Aziz AR, Sulaiman NMN (2011) Membrane biodiesel production and refining technology: a critical review. Renew Sustain Energy Rev 15:5051–5062.  https://doi.org/10.1016/j.rser.2011.07.051 CrossRefGoogle Scholar
  3. Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev 4:37–59.  https://doi.org/10.1002/cben.201600010 CrossRefGoogle Scholar
  4. Babaei A, Mehrnia MR, Shayegan J, Sarrafzadeh M-H (2016) Comparison of different trophic cultivations in microalgal membrane bioreactor containing N-riched wastewater for simultaneous nutrient removal and biomass production. Process Biochem 51:1568–1575.  https://doi.org/10.1016/j.procbio.2016.06.011 CrossRefGoogle Scholar
  5. Baheri B, Shahverdi M, Rezakazemi M, Motaee E, Mohammadi T (2014) Performance of PVA/NaA mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation. Chem Eng Commun 202:316–321.  https://doi.org/10.1080/00986445.2013.841149 CrossRefGoogle Scholar
  6. Baroutian S, Aroua MK, Raman AAA, Sulaiman NMN (2010) Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: experimental study and neural network modeling. Sep Purif Technol 76:58–63.  https://doi.org/10.1016/j.seppur.2010.09.020 CrossRefGoogle Scholar
  7. Baroutian S, Aroua MK, Raman AAA, Sulaiman NM (2011) A packed bed membrane reactor for production of biodiesel using activated carbon supported catalyst. Biores Technol 102:1095–1102.  https://doi.org/10.1016/j.biortech.2010.08.076 CrossRefGoogle Scholar
  8. Basu S, Khan AL, Cano-Odena A, Liu C, Vankelecom IF (2010) Membrane-based technologies for biogas separations. Chem Soc Rev 39:750–768.  https://doi.org/10.1039/b817050a CrossRefGoogle Scholar
  9. Borisov I, Golubev G, Vasilevsky V, Volkov A, Volkov V (2017) Novel hybrid process for bio-butanol recovery: thermopervaporation with porous condenser assisted by phase separation. J Membr Sci 523:291–300.  https://doi.org/10.1016/j.memsci.2016.10.009 CrossRefGoogle Scholar
  10. Bos A, Pünt I, Wessling M, Strathmann H (1998) Plasticization-resistant glassy polyimide membranes for CO2/CO4 separations. Sep Purif Technol 14:27–39.  https://doi.org/10.1016/S1383-5866(98)00057-4 CrossRefGoogle Scholar
  11. Canakci M, Sanli H (2008) Biodiesel production from various feedstocks and their effects on the fuel properties. J Ind Microbiol Biotechnol 35:431–441.  https://doi.org/10.1007/s10295-008-0337-6 CrossRefGoogle Scholar
  12. Cannilla C, Bonura G, Frusteri F (2017) Potential of pervaporation and vapor separation with water selective membranes for an optimized production of biofuels—a review. Catalysts 7:187.  https://doi.org/10.3390/catal7060187 CrossRefGoogle Scholar
  13. Cao C, Chung T-S, Liu Y, Wang R, Pramoda K (2003) Chemical cross-linking modification of 6FDA-2, 6-DAT hollow fiber membranes for natural gas separation. J Membr Sci 216:257–268.  https://doi.org/10.1016/S0376-7388(03)00080-2 CrossRefGoogle Scholar
  14. Cao P, Dubé MA, Tremblay AY (2008a) High-purity fatty acid methyl ester production from canola, soybean, palm, and yellow grease lipids by means of a membrane reactor. Biomass Bioenerg 32:1028–1036.  https://doi.org/10.1016/j.biombioe.2008.01.020 CrossRefGoogle Scholar
  15. Cao P, Dubé MA, Tremblay AY (2008b) Methanol recycling in the production of biodiesel in a membrane reactor. Fuel 87:825–833.  https://doi.org/10.1016/j.fuel.2007.05.048 CrossRefGoogle Scholar
  16. Castanheiro J, Ramos A, Fonseca I, Vital J (2006) Esterification of acetic acid by isoamylic alcohol over catalytic membranes of poly (vinyl alcohol) containing sulfonic acid groups. Appl Catal A 311:17–23.  https://doi.org/10.1016/j.apcata.2006.05.039 CrossRefGoogle Scholar
  17. Chmielewski D, Ziaka Z, Manousiouthakis V (1999) Conversion targets for plug flow membrane reactors. Chem Eng Sci 54:2979–2984.  https://doi.org/10.1016/S0009-2509(98)00361-3 CrossRefGoogle Scholar
  18. Cicci A, Stoller M, Bravi M (2013) Microalgal biomass production by using ultra-and nanofiltration membrane fractions of olive mill wastewater. Water Res 47:4710–4718.  https://doi.org/10.1016/j.watres.2013.05.030 CrossRefGoogle Scholar
  19. Coronas J, Santamarıa J (1999) Catalytic reactors based on porous ceramic membranes. Catal Today 51:377–389.  https://doi.org/10.1016/S0920-5861(99)00090-5 CrossRefGoogle Scholar
  20. Dashti A, Harami HR, Rezakazemi M (2018) Accurate prediction of solubility of gases within H2-selective nanocomposite membranes using committee machine intelligent system. Int J Hydrogen Energy 43:6614–6624.  https://doi.org/10.1016/j.ijhydene.2018.02.046 CrossRefGoogle Scholar
  21. Dubé M, Tremblay A, Liu J (2007) Biodiesel production using a membrane reactor. Biores Technol 98:639–647.  https://doi.org/10.1016/j.biortech.2006.02.019 CrossRefGoogle Scholar
  22. Farno E, Rezakazemi M, Mohammadi T, Kasiri N (2014) Ternary gas permeation through synthesized PDMS membranes: experimental and CFD simulation basedon sorption-dependent system using neural network model. Polym Eng Sci 54:215–226.  https://doi.org/10.1002/pen.23555 CrossRefGoogle Scholar
  23. Foroutan R, Esmaeili H, Abbasi M, Rezakazemi M, Mesbah M (2017) Adsorption behavior of Cu(II) and Co(II) using chemically modified marine algae. Environ Technol.  https://doi.org/10.1080/09593330.2017.1365946 CrossRefGoogle Scholar
  24. Friedlingstein P, Andrew RM, Rogelj J, Peters GP, Canadell JG, Knutti R, Luderer G, Raupach MR, Schaeffer M, van Vuuren DP, Le Quere C (2014) Persistent growth of CO2 emissions and implications for reaching climate targets. Nat Geosci 7:709–715.  https://doi.org/10.1038/ngeo2248 CrossRefGoogle Scholar
  25. Friess K, Lanč M, Pilnáček K, Fíla V, Vopička O, Sedláková Z, Cowan MG, McDanel WM, Noble RD, Gin DL (2017) CO2/CH4 separation performance of ionic-liquid-based epoxy-amine ion gel membranes under mixed feed conditions relevant to biogas processing. J Membr Sci 528:64–71.  https://doi.org/10.1016/j.memsci.2017.01.016 CrossRefGoogle Scholar
  26. Gao F, Li C, Yang Z-H, Zeng G-M, Feng L-J, J-z Liu, Liu M, H-w Cai (2016) Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecol Eng 92:55–61.  https://doi.org/10.1016/j.ecoleng.2016.03.046 CrossRefGoogle Scholar
  27. Gao L, Alberto M, Gorgojo P, Szekely G, Budd PM (2017) High-flux PIM-1/PVDF thin film composite membranes for 1-butanol/water pervaporation. J Membr Sci 529:207–214.  https://doi.org/10.1016/j.memsci.2017.02.008 CrossRefGoogle Scholar
  28. Gao F, Peng Y-Y, Li C, Cui W, Yang Z-H, Zeng G-M (2018) Coupled nutrient removal from secondary effluent and algal biomass production in membrane photobioreactor (MPBR): effect of HRT and long-term operation. Chem Eng J 335:169–175.  https://doi.org/10.1016/j.cej.2017.10.151 CrossRefGoogle Scholar
  29. Guerreiro L, Castanheiro J, Fonseca I, Martin-Aranda R, Ramos A, Vital J (2006) Transesterification of soybean oil over sulfonic acid functionalised polymeric membranes. Catal Today 118:166–171.  https://doi.org/10.1016/j.cattod.2005.12.012 CrossRefGoogle Scholar
  30. Guerreiro L, Pereira P, Fonseca I, Martin-Aranda R, Ramos A, Dias J, Oliveira R, Vital J (2010) PVA embedded hydrotalcite membranes as basic catalysts for biodiesel synthesis by soybean oil methanolysis. Catal Today 156:191–197.  https://doi.org/10.1016/j.cattod.2010.04.046 CrossRefGoogle Scholar
  31. Gugliuzza A, Basile A (2014) 3—Membrane processes for biofuel separation: an introduction. In: Gugliuzza A, Basile A (eds) Membranes for clean and renewable power applications. Woodhead Publishing, Cambridge, pp 65–103.  https://doi.org/10.1533/9780857098658.2.65 CrossRefGoogle Scholar
  32. Guiver MD, Robertson GP, Dai Y, Bilodeau F, Kang YS, Lee KJ, Jho JY, Won J (2002) Structural characterization and gas-transport properties of brominated matrimid polyimide. J Polym Sci A Polym Chem 40:4193–4204.  https://doi.org/10.1002/pola.10516 CrossRefGoogle Scholar
  33. Hajilary N, Shahi A, Rezakazemi M (2018a) Evaluation of socio-economic factors on CO2 emissions in Iran: factorial design and multivariable methods. J Clean Prod 189:108–115.  https://doi.org/10.1016/j.jclepro.2018.04.067 CrossRefGoogle Scholar
  34. Hajilary N, Shahi A, Rezakazemi M (2018b) Evaluation of socio-economic factors on CO2 emissions in Iran: factorial design and multivariable methods. J Clean Prod.  https://doi.org/10.1016/j.jclepro.2018.04.067 CrossRefGoogle Scholar
  35. Hess S, Staudt C (2007) Variation of esterfication conditions to optimize solid-state crosslinking reaction of DABA-containing copolyimide membranes for gas separations. Desalination 217:8–16.  https://doi.org/10.1016/j.desal.2007.01.011 CrossRefGoogle Scholar
  36. Hosseini SS, Teoh MM, Chung TS (2008) Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks. Polymer 49:1594–1603.  https://doi.org/10.1016/j.polymer.2008.01.052 CrossRefGoogle Scholar
  37. Hu MZ, Engtrakul C, Bischoff BL, Jang GG, Theiss TJ, Davis MF (2017) Superhydrophobic and superhydrophilic surface-enhanced separation performance of porous inorganic membranes for biomass-to-biofuel conversion applications. Sep Sci Technol 52:528–543.  https://doi.org/10.1080/01496395.2016.1260144 CrossRefGoogle Scholar
  38. Huang H-J, Ramaswamy S, Tschirner U, Ramarao B (2008) A review of separation technologies in current and future biorefineries. Sep Purif Technol 62:1–21.  https://doi.org/10.1016/j.seppur.2007.12.011 CrossRefGoogle Scholar
  39. Ikegami T, Kitamoto D, Negishi H, Haraya K, Matsuda H, Nitanai Y, Koura N, Sano T, Yanagishita H (2003) Drastic improvement of bioethanol recovery using a pervaporation separation technique employing a silicone rubber-coated silicalite membrane. J Chem Technol Biotechnol 78:1006–1010.  https://doi.org/10.1002/jctb.897 CrossRefGoogle Scholar
  40. Iovane P, Nanna F, Ding Y, Bikson B, Molino A (2014) Experimental test with polymeric membrane for the biogas purification from CO2 and H2S. Fuel 135:352–358.  https://doi.org/10.1016/j.fuel.2014.06.060 CrossRefGoogle Scholar
  41. Ismail A, Lorna W (2003) Suppression of plasticization in polysulfone membranes for gas separations by heat-treatment technique. Sep Purif Technol 30:37–46.  https://doi.org/10.1016/S1383-5866(02)00097-7 CrossRefGoogle Scholar
  42. Kamiya Y, Mizoguchi K, Hirose T, Naito Y (1989) Sorption and dilation in poly (ethyl methacrylate)–carbon dioxide system. J Polym Sci B Polym Phys 27:879–892.  https://doi.org/10.1002/polb.1989.090270412 CrossRefGoogle Scholar
  43. Knothe G, Dunn RO, Bagby MO (1997) Biodiesel: the use of vegetable oils and their derivatives as alternative diesel fuels. ACS Publications. https://doi.org/10.1021/bk-1997-0666.ch010Google Scholar
  44. Koutinas A, Kanellaki M, Bekatorou A, Kandylis P, Pissaridi K, Dima A, Boura K, Lappa K, Tsafrakidou P, Stergiou P-Y, Foukis A, Gkini OA, Papamichael EM (2016) Economic evaluation of technology for a new generation biofuel production using wastes. Biores Technol 200:178–185.  https://doi.org/10.1016/j.biortech.2015.09.093 CrossRefGoogle Scholar
  45. Le NL, Nunes SP (2016) Materials and membrane technologies for water and energy sustainability. Sustain Mater Technol 7:1–28.  https://doi.org/10.1016/j.susmat.2016.02.001 CrossRefGoogle Scholar
  46. Lee H-J, Cho EJ, Kim Y-G, Choi IS, Bae H-J (2012) Pervaporative separation of bioethanol using a polydimethylsiloxane/polyetherimide composite hollow-fiber membrane. Biores Technol 109:110–115.  https://doi.org/10.1016/j.biortech.2012.01.060 CrossRefGoogle Scholar
  47. Mesbah M, Shahsavari S, Soroush E, Rahaei N, Rezakazemi M (2018) Accurate prediction of miscibility of CO2 and supercritical CO2 in ionic liquids using machine learning. J CO2 Util 25:99–107.  https://doi.org/10.1016/j.jcou.2018.03.004 CrossRefGoogle Scholar
  48. Mo W, Soh L, Werber JR, Elimelech M, Zimmerman JB (2015) Application of membrane dewatering for algal biofuel. Algal Res 11:1–12.  https://doi.org/10.1016/j.algal.2015.05.018 CrossRefGoogle Scholar
  49. Mohr J, Paul D, Pinnau I, Koros W (1991) Surface fluorination of polysulfone asymmetric membranes and films. J Membr Sci 56:77–98.  https://doi.org/10.1016/0376-7388(91)85016-X CrossRefGoogle Scholar
  50. Murthy G, Sridhar S, Sunder MS, Shankaraiah B, Ramakrishna M (2005) Concentration of xylose reaction liquor by nanofiltration for the production of xylitol sugar alcohol. Sep Purif Technol 44:221–228.  https://doi.org/10.1016/j.seppur.2005.01.009 CrossRefGoogle Scholar
  51. Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68.  https://doi.org/10.1016/j.pecs.2010.01.003 CrossRefGoogle Scholar
  52. Nigiz FU, Hilmioglu ND (2018) Waste to energy with a combine membrane technology: biobutanol production and purification, exergetic, energetic and environmental dimensions. Elsevier, New York, pp 861–871.  https://doi.org/10.1016/B978-0-12-813734-5.00049-4 CrossRefGoogle Scholar
  53. Oh Y-K, Hwang K-R, Kim C, Kim JR, Lee J-S (2018) Recent developments and key barriers to advanced biofuels: a short review. Biores Technol 257:320–333.  https://doi.org/10.1016/j.biortech.2018.02.089 CrossRefGoogle Scholar
  54. Oumer AN, Hasan MM, Baheta AT, Mamat R, Abdullah AA (2018) Bio-based liquid fuels as a source of renewable energy: a review. Renew Sustain Energy Rev 88:82–98.  https://doi.org/10.1016/j.rser.2018.02.022 CrossRefGoogle Scholar
  55. Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production. Crit Rev Biotechnol 31:20–31.  https://doi.org/10.3109/07388551003757816 CrossRefGoogle Scholar
  56. Petrusevski B, Bolier G, Van Breemen A, Alaerts G (1995) Tangential flow filtration: a method to concentrate freshwater algae. Water Res 29:1419–1424.  https://doi.org/10.1016/0043-1354(94)00269-D CrossRefGoogle Scholar
  57. Rasi S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. Energy 32:1375–1380.  https://doi.org/10.1016/j.energy.2006.10.018 CrossRefGoogle Scholar
  58. Razavi SMR, Rezakazemi M, Albadarin AB, Shirazian S (2016) Simulation of CO2 absorption by solution of ammonium ionic liquid in hollow-fiber contactors. Chem Eng Process 108:27–34.  https://doi.org/10.1016/j.cep.2016.07.001 CrossRefGoogle Scholar
  59. Rdzanek P, Marszałek J, Kamiński W (2017) Biobutanol concentration by pervaporation using supported ionic liquid membranes. Sep Purif Technol 196:124–131.  https://doi.org/10.1016/j.seppur.2017.10.010 CrossRefGoogle Scholar
  60. Rezakazemi M (2018) CFD simulation of seawater purification using direct contact membrane desalination (DCMD) system. Desalination.  https://doi.org/10.1016/j.desal.2017.12.048 CrossRefGoogle Scholar
  61. Rezakazemi M, Mohammadi T (2013) Gas sorption in H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38:14035–14041.  https://doi.org/10.1016/j.ijhydene.2013.08.062 CrossRefGoogle Scholar
  62. Rezakazemi M, Niazi Z, Mirfendereski M, Shirazian S, Mohammadi T, Pak A (2011a) CFD simulation of natural gas sweetening in a gas–liquid hollow-fiber membrane contactor. Chem Eng J 168:1217–1226.  https://doi.org/10.1016/j.cej.2011.02.019 CrossRefGoogle Scholar
  63. Rezakazemi M, Razavi S, Mohammadi T, Nazari AG (2011b) Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems. J Membr Sci 379:224–232.  https://doi.org/10.1016/j.memsci.2011.05.070 CrossRefGoogle Scholar
  64. Rezakazemi M, Shahverdi M, Shirazian S, Mohammadi T, Pak A (2011c) CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation. Chem Eng J 168:60–67.  https://doi.org/10.1016/j.cej.2010.12.034 CrossRefGoogle Scholar
  65. Rezakazemi M, Shahidi K, Mohammadi T (2012a) Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes. Int J Hydrogen Energy 37:14576–14589.  https://doi.org/10.1016/j.ijhydene.2012.06.104 CrossRefGoogle Scholar
  66. Rezakazemi M, Shahidi K, Mohammadi T (2012b) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrogen Energy 37:17275–17284.  https://doi.org/10.1016/j.ijhydene.2012.08.109 CrossRefGoogle Scholar
  67. Rezakazemi M, Shirazian S, Ashrafizadeh SN (2012c) Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor. Desalination 285:383–392.  https://doi.org/10.1016/j.desal.2011.10.030 CrossRefGoogle Scholar
  68. Rezakazemi M, Ghafarinazari A, Shirazian S, Khoshsima A (2013a) Numerical modeling and optimization of wastewater treatment using porous polymeric membranes. Polym Eng Sci 53:1272–1278.  https://doi.org/10.1002/pen.23375 CrossRefGoogle Scholar
  69. Rezakazemi M, Iravaninia M, Shirazian S, Mohammadi T (2013b) Transient computational fluid dynamics modeling of pervaporation separation of aromatic/aliphatic hydrocarbon mixtures using polymer composite membrane. Polym Eng Sci 53:1494–1501.  https://doi.org/10.1002/pen.23410 CrossRefGoogle Scholar
  70. Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014a) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39:817–861.  https://doi.org/10.1016/j.progpolymsci.2014.01.003 CrossRefGoogle Scholar
  71. Rezakazemi M, Shahidi K, Mohammadi T (2014b) Synthetic PDMS composite membranes for pervaporation dehydration of ethanol. Desalination and Water Treatment 54:1–8.  https://doi.org/10.1080/19443994.2014.887036 CrossRefGoogle Scholar
  72. Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Advances 5:82460–82470.  https://doi.org/10.1039/c5ra13609a CrossRefGoogle Scholar
  73. Rezakazemi M, Vatani A, Mohammadi T (2016) Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. J Nat Gas Sci Eng 30:10–18.  https://doi.org/10.1016/j.jngse.2016.01.033 CrossRefGoogle Scholar
  74. Rezakazemi M, Dashti A, Asghari M, Shirazian S (2017a) H 2 -selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS. Int J Hydrogen Energy 42:15211–15225.  https://doi.org/10.1016/j.ijhydene.2017.04.044 CrossRefGoogle Scholar
  75. Rezakazemi M, Heydari I, Zhang Z (2017b) Hybrid systems: combining membrane and absorption technologies leads to more efficient acid gases (CO2 and H2S) removal from natural gas. Journal of CO2 Utilization 18:362–369.  https://doi.org/10.1016/j.jcou.2017.02.006 CrossRefGoogle Scholar
  76. Rezakazemi M, Khajeh A, Mesbah M (2017c) Membrane filtration of wastewater from gas and oil production. Environ Chem Lett.  https://doi.org/10.1007/s10311-017-0693-4 CrossRefGoogle Scholar
  77. Rezakazemi M, Maghami M, Mohammadi T (2017d) High loaded synthetic hazardous wastewater treatment using lab-scale submerged ceramic membrane bioreactor. Periodica Polytech Chem Eng.  https://doi.org/10.3311/PPch.11459 CrossRefGoogle Scholar
  78. Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017e) Methods for the preparation of organic–inorganic nanocomposite polymer electrolyte membranes for fuel cells. In: Inamuddin D, Mohammad A, Asiri AM (eds) Organic-inorganic composite polymer electrolyte membranes. Springer, Cham, pp 311–325.  https://doi.org/10.1007/978-3-319-52739-0_11 CrossRefGoogle Scholar
  79. Rezakazemi M, Dashti A, Riasat Harami H, Hajilari N, Inamuddin (2018a) Fouling-resistant membranes for water reuse. Environ Chem Lett.  https://doi.org/10.1007/s10311-018-0717-8 CrossRefGoogle Scholar
  80. Rezakazemi M, Sadrzadeh M, Matsuura T (2018b) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41.  https://doi.org/10.1016/j.pecs.2017.11.002 CrossRefGoogle Scholar
  81. Rezakazemi M, Sadrzadeh M, Mohammadi T (2018c) Separation via pervaporation techniques through polymeric membranes. In: George SC, Wilson R, Ak S (eds) Transport properties of polymeric membranes. Elsevier, New York, pp 243–263.  https://doi.org/10.1016/b978-0-12-809884-4.00013-6 CrossRefGoogle Scholar
  82. Rom A, Friedl A (2016) Investigation of pervaporation performance of POMS membrane during separation of butanol from water and the effect of added acetone and ethanol. Sep Purif Technol 170:40–48.  https://doi.org/10.1016/j.seppur.2016.06.030 CrossRefGoogle Scholar
  83. Rostamizadeh M, Rezakazemi M, Shahidi K, Mohammadi T (2013) Gas permeation through H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38:1128–1135.  https://doi.org/10.1016/j.ijhydene.2012.10.069 CrossRefGoogle Scholar
  84. Roy S, Singha NR (2017) Polymeric nanocomposite membranes for next generation pervaporation process: strategies, challenges and future prospects. Membranes 7:53.  https://doi.org/10.3390/membranes7030053 CrossRefGoogle Scholar
  85. Sadrzadeh M, Rezakazemi M, Mohammadi T (2018) Fundamentals and measurement techniques for gas transport in polymers. In: George SC, Wilson R, Ak S (eds) Transport properties of polymeric membranes. Elsevier, New York, pp 391–423.  https://doi.org/10.1016/b978-0-12-809884-4.00019-7 CrossRefGoogle Scholar
  86. Saleh J, Tremblay AY, Dubé MA (2010) Glycerol removal from biodiesel using membrane separation technology. Fuel 89:2260–2266.  https://doi.org/10.1016/j.fuel.2010.04.025 CrossRefGoogle Scholar
  87. Saravanan AP, Mathimani T, Deviram G, Rajendran K, Pugazhendhi A (2018) Biofuel policy in India: a review of policy barriers in sustainable marketing of biofuel. J Clean Prod 193:734–747.  https://doi.org/10.1016/j.jclepro.2018.05.033 CrossRefGoogle Scholar
  88. Schmidt SL, Myers MD, Kelley SS, McMillan JD, Padukone N (1997) Evaluation of PTMSP membranes in achieving enhanced ethanol removal from fermentations by pervaporation, biotechnology for fuels and chemicals. Springer, Cham, pp 469–482.  https://doi.org/10.1007/978-1-4612-2312-2_41 CrossRefGoogle Scholar
  89. Shahverdi M, Baheri B, Rezakazemi M, Motaee E, Mohammadi T (2013) Pervaporation study of ethylene glycol dehydration through synthesized (PVA-4A)/polypropylene mixed matrix composite membranes. Polym Eng Sci 53:1487–1493.  https://doi.org/10.1002/pen.23406 CrossRefGoogle Scholar
  90. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) Look back at the US department of energy’s aquatic species program: biodiesel from algae; close-out report. National Renewable Energy Lab, GoldenCrossRefGoogle Scholar
  91. Shi W, He B, Ding J, Li J, Yan F, Liang X (2010) Preparation and characterization of the organic–inorganic hybrid membrane for biodiesel production. Biores Technol 101:1501–1505.  https://doi.org/10.1016/j.biortech.2009.07.014 CrossRefGoogle Scholar
  92. Shirazian S, Marjani A, Rezakazemi M (2011) Separation of CO2 by single and mixed aqueous amine solvents in membrane contactors: fluid flow and mass transfer modeling. Eng Comput 28:189–198.  https://doi.org/10.1007/s00366-011-0237-7 CrossRefGoogle Scholar
  93. Shirazian S, Rezakazemi M, Marjani A, Moradi S (2012) Hydrodynamics and mass transfer simulation of wastewater treatment in membrane reactors. Desalination 286:290–295.  https://doi.org/10.1016/j.desal.2011.11.039 CrossRefGoogle Scholar
  94. Sodeifian G, Raji M, Asghari M, Rezakazemi M, Dashti A (2018) Polyurethane-SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Chin J Chem Eng.  https://doi.org/10.1016/j.cjche.2018.03.012 CrossRefGoogle Scholar
  95. Soroush E, Shahsavari S, Mesbah M, Rezakazemi M, Ze Zhang (2018) A robust predictive tool for estimating CO2 solubility in potassium based amino acid salt solutions. Chin J Chem Eng 26:740–746.  https://doi.org/10.1016/j.cjche.2017.10.002 CrossRefGoogle Scholar
  96. Speight JG (2011) The biofuels handbook. Royal Society of Chemistry, LondonCrossRefGoogle Scholar
  97. Udriot H, Ampuero S, Marison I, Von Stockar U (1989) Extractive fermentation of ethanol using membrane distillation. Biotech Lett 11:509–514.  https://doi.org/10.1007/BF01026651 CrossRefGoogle Scholar
  98. Vane LM (2008) Separation technologies for the recovery and dehydration of alcohols from fermentation broths. Biofuels Bioprod Biorefin 2:553–588.  https://doi.org/10.1002/bbb.108 CrossRefGoogle Scholar
  99. Villa A, Tessonnier J-P, Majoulet O, Su DS, Schlögl R (2009) Amino-functionalized carbon nanotubes as solid basic catalysts for the transesterification of triglycerides. Chem Commun 0:4405–4407.  https://doi.org/10.1039/B906123A CrossRefGoogle Scholar
  100. Visser T, Masetto N, Wessling M (2007) Materials dependence of mixed gas plasticization behavior in asymmetric membranes. J Membr Sci 306:16–28.  https://doi.org/10.1016/j.memsci.2007.07.048 CrossRefGoogle Scholar
  101. Wei P, Cheng L-H, Zhang L, Xu X-H, H-l Chen, C-j Gao (2014) A review of membrane technology for bioethanol production. Renew Sustain Energy Rev 30:388–400.  https://doi.org/10.1016/j.rser.2013.10.017 CrossRefGoogle Scholar
  102. Westermann T, Melin T (2009) Flow-through catalytic membrane reactors—principles and applications. Chem Eng Process 48:17–28.  https://doi.org/10.1016/j.cep.2008.07.001 CrossRefGoogle Scholar
  103. Ylitervo P, Akinbomi J, Taherzadeh MJ (2013) Membrane bioreactors’ potential for ethanol and biogas production: a review. Environ Technol 34:1711–1723.  https://doi.org/10.1080/09593330.2013.813559 CrossRefGoogle Scholar
  104. Zhang Z, Chen F, Rezakazemi M, Zhang W, Lu C, Chang H, Quan X (2018) Modeling of a CO2-piperazine-membrane absorption system. Chem Eng Res Des 131:375–384.  https://doi.org/10.1016/j.cherd.2017.11.024 CrossRefGoogle Scholar
  105. Zhu M, He B, Shi W, Feng Y, Ding J, Li J, Zeng F (2010) Preparation and characterization of PSSA/PVA catalytic membrane for biodiesel production. Fuel 89:2299–2304.  https://doi.org/10.1016/j.fuel.2010.02.001 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of Technical and EngineeringGolestan UniversityGorganIran
  2. 2.Faculty of Chemical and Materials EngineeringShahrood University of TechnologyShahroodIran
  3. 3.Department for Management of Science and Technology DevelopmentTon Duc Thang UniversityHo Chi Minh CityVietnam
  4. 4.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations