Advertisement

Rapid synthesis of mono/bimetallic (Zn/Co/Zn–Co) zeolitic imidazolate frameworks at room temperature and evolution of their CO2 uptake capacity

  • Satish Kumar Nandigama
  • Vema Reddy Bheeram
  • Saratchandra Babu Mukkamala
Original Paper

Abstract

Carbon dioxide (CO2) emissions from fossil fuels cause air pollution and lead to adverse impact on environment. To achieve low-carbon economy, capturing CO2 in the environment by methods like physisorption on zeolitic imidazolate frameworks (ZIFs) and other zeolite materials has gained attention due to their pore tunability and adsorption efficiency. Exploring the efficacy of the ZIF in adsorbing CO2, we report a rapid and convenient protocol for the synthesis of novel hybrid monometallic and bimetallic Zn/Co/Co–Zn-based ZIFs at room temperature, and we evaluate their CO2 capture capacity. ZIFs with varying Co:Zn ratio were synthesized by altering the content of Co and Zn precursors. The CO2 uptake capacity of mono/bimetallic Zn–Co ZIFs was studied at 298 K and attains the highest CO2 uptake of 65.50 cm3/g. This rapid room temperature protocol is highly efficient for the synthesis of mono/bimetallic ZIF-CO2 adsorbents.

Keywords

Zeolitic imidazolate frameworks Adsorption isotherms Carbon dioxide Rapid synthesis Mixed ligand 

Notes

Acknowledgements

This work was supported by Council of Scientific Industrial Research (CSIR), Govt. of India (Project No: 01 (2843)/16/EMR-II).

References

  1. An J, Fiorella RP, Geib SJ, Rosi NL (2009) Synthesis, structure, assembly, and modulation of the CO2 adsorption properties of a zinc-adeninate macrocycle. J Am Chem Soc 131:8401–8403.  https://doi.org/10.1021/ja901869m CrossRefGoogle Scholar
  2. Banerjee R, Furukawa H, Britt D et al (2009) Control of Pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide Se. J Am Chem Soc 131:3875–3877.  https://doi.org/10.1021/ja809459e CrossRefGoogle Scholar
  3. Botas JA, Calleja G, Sánchez-Sánchez M, Orcajo MG (2010) Cobalt doping of the MOF-5 framework and its effect on gas-adsorption properties. Langmuir 26:5300–5303.  https://doi.org/10.1021/la100423a CrossRefGoogle Scholar
  4. Caro J, Noack M, Kölsch P, Schäfer R (2000) Zeolite membranes—state of their development and perspective. Microporous Mesoporous Mater 38:3–24.  https://doi.org/10.1016/S1387-1811(99)00295-4 CrossRefGoogle Scholar
  5. Caskey SR, Wong-Foy AG, Matzger AJ (2008) Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J Am Chem Soc 130:10870–10871.  https://doi.org/10.1021/ja8036096 CrossRefGoogle Scholar
  6. Cheetham AK, Rao CNR, Feller RK (2006) Structural diversity and chemical trends in hybrid inorganic-organic framework materials. Chem Commun.  https://doi.org/10.1039/B610264F Google Scholar
  7. Chen X, Li C, Grätzel M et al (2012) Nanomaterials for renewable energy production and storage. Chem Soc Rev 41:7909–7937.  https://doi.org/10.1039/c2cs35230c CrossRefGoogle Scholar
  8. Chen YZ, Wang C, Wu ZY et al (2015) From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis. Adv Mater 27:5010–5016.  https://doi.org/10.1002/adma.201502315 CrossRefGoogle Scholar
  9. Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821.  https://doi.org/10.1038/nature00785 CrossRefGoogle Scholar
  10. Dhakshinamoorthy A, Asiri AM, Garcia H (2016) Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts. Catal Sci Technol 6:5238–5261.  https://doi.org/10.1039/C6CY00695G CrossRefGoogle Scholar
  11. Eum K, Jayachandrababu KC, Rashidi F et al (2015) Highly tunable molecular sieving and adsorption properties of mixed-linker zeolitic imidazolate frameworks. J Am Chem Soc 137:4191–4197.  https://doi.org/10.1021/jacs.5b00803 CrossRefGoogle Scholar
  12. Fairen-Jimenez D, Moggach SA, Wharmby MT et al (2011) Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. J Am Chem Soc 133:8900–8902.  https://doi.org/10.1021/ja202154j CrossRefGoogle Scholar
  13. Férey G, Mellot-Draznieks C, Serre C, Millange F (2005) Crystallized frameworks with giant pores: are there limits to the possible? Acc Chem Res 38:217–225.  https://doi.org/10.1021/ar040163i CrossRefGoogle Scholar
  14. Goeppert A, Czaun M, Jones J-P et al (2014) Recycling of carbon dioxide to methanol and derived products—closing the loop. Chem Soc Rev 43:7995–8048.  https://doi.org/10.1039/C4CS00122B CrossRefGoogle Scholar
  15. Hillman F, Zimmerman JM, Paek S-M et al (2017) Rapid microwave-assisted synthesis of hybrid zeolitic–imidazolate frameworks with mixed metals and mixed linkers. J Mater Chem A 5:6090–6099.  https://doi.org/10.1039/C6TA11170J CrossRefGoogle Scholar
  16. Kaur G, Rai RK, Tyagi D et al (2016) Room-temperature synthesis of bimetallic Co–Zn based zeolitic imidazolate frameworks in water for enhanced CO2 and H2 uptakes. J Mater Chem A 4:14932–14938.  https://doi.org/10.1039/C6TA04342A CrossRefGoogle Scholar
  17. Khan NA, Jhung SH (2015) Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: rapid reaction, phase-selectivity, and size reduction. Coord Chem Rev 285:11–23.  https://doi.org/10.1016/j.ccr.2014.10.008 CrossRefGoogle Scholar
  18. Kuruppathparambil RR, Babu R, Jeong HM et al (2016) A solid solution zeolitic imidazolate framework as a room temperature efficient catalyst for the chemical fixation of CO 2. Green Chem 18:6349–6356.  https://doi.org/10.1039/C6GC01614F CrossRefGoogle Scholar
  19. Lenton TM (2006) Climate change to the end of the millennium: an editorial review essay. Clim Change 76:7–29.  https://doi.org/10.1007/s10584-005-9022-1 CrossRefGoogle Scholar
  20. Li J-R, Kuppler RJ, Zhou H-C (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38:1477.  https://doi.org/10.1039/b802426j CrossRefGoogle Scholar
  21. Liao YT, Dutta S, Chien CH et al (2015) Synthesis of mixed-ligand zeolitic imidazolate framework (ZIF-8-90) for CO2 adsorption. J Inorg Organomet Polym Mater 25:251–258.  https://doi.org/10.1007/s10904-014-0131-z CrossRefGoogle Scholar
  22. Liu S, Zhang Y, Jiang H, Wang X, Zhang T, Yao Y et al (2017) High CO2 adsorption by amino-modified bio-spherical cellulose nanofibres aerogels. Environ Chem Lett 16:605–614.  https://doi.org/10.1007/s10311-017-0701-8 CrossRefGoogle Scholar
  23. Moggach SA, Bennett TD, Cheetham AK (2009) The effect of pressure on ZIF-8: increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa. Angew Chem Int Ed 48:7087–7089.  https://doi.org/10.1002/anie.200902643 CrossRefGoogle Scholar
  24. Park KS, Ni Z, Côté AP et al (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A 103:10186–10191.  https://doi.org/10.1073/pnas.0602439103 CrossRefGoogle Scholar
  25. Phan A, Doonan CJ, Uribe-Romo FJ et al (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43:58–67.  https://doi.org/10.1021/ar900116g CrossRefGoogle Scholar
  26. Rashidi F, Blad CR, Jones CW, Nair S (2016) Synthesis, characterization, and tunable adsorption and diffusion properties of hybrid ZIF-7-90 frameworks. AIChE J 62:525–537.  https://doi.org/10.1002/aic.15102 CrossRefGoogle Scholar
  27. Raupach MR, Marland G, Ciais P et al (2007) Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci 104:10288–10293.  https://doi.org/10.1073/pnas.0700609104 CrossRefGoogle Scholar
  28. Razali NAM, Lee KT, Bhatia S, Mohamed AR (2012) Heterogeneous catalysts for production of chemicals using carbon dioxide as raw material: a review. Renew Sustain Energy Rev 16:4951–4964.  https://doi.org/10.1016/j.rser.2012.04.012 CrossRefGoogle Scholar
  29. Schejn A, Aboulaich A, Balan L et al (2015) Cu2+ -doped zeolitic imidazolate frameworks (ZIF-8): efficient and stable catalysts for cycloadditions and condensation reactions. Catal Sci Technol 5:1829–1839.  https://doi.org/10.1039/C4CY01505C CrossRefGoogle Scholar
  30. Schoedel A, Ji Z, Yaghi OM (2016) The role of metal-organic frameworks in a carbon-neutral energy cycle. Nat Energy 1:16034.  https://doi.org/10.1038/nenergy.2016.34 CrossRefGoogle Scholar
  31. Shah M, McCarthy MC, Sachdeva S et al (2012) Current status of metal-organic framework membranes for gas separations: promises and challenges. Ind Eng Chem Res 51:2179–2199.  https://doi.org/10.1021/ie202038m CrossRefGoogle Scholar
  32. Thompson JA, Blad CR, Brunelli NA et al (2012) Hybrid zeolitic imidazolate frameworks: controlling framework porosity and functionality by mixed-linker synthesis. Chem Mater 24:1930–1936.  https://doi.org/10.1021/cm3006953 CrossRefGoogle Scholar
  33. Thompson JA, Brunelli NA, Lively RP et al (2013) Tunable CO2 adsorbents by mixed-linker synthesis and post-synthetic modification of zeolitic imidazolate frameworks. J Phys Chem C 117:8198–8207.  https://doi.org/10.1021/jp312590r CrossRefGoogle Scholar
  34. Tranchemontagne DJ, Hunt JR, Yaghi OM (2008) Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 64:8553–8557.  https://doi.org/10.1016/j.tet.2008.06.036 CrossRefGoogle Scholar
  35. Wang F, Tan Y-X, Yang H et al (2011a) A new approach towards tetrahedral imidazolate frameworks for high and selective CO2 uptake. Chem Commun 47:5828.  https://doi.org/10.1039/c1cc10829h CrossRefGoogle Scholar
  36. Wang W, Wang S, Ma X, Gong J (2011b) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727.  https://doi.org/10.1039/c1cs15008a CrossRefGoogle Scholar
  37. Wang F, Yang H, Kang Y, Zhang J (2012) Guest selectivity of a porous tetrahedral imidazolate framework material during self-assembly. J Mater Chem 22:19732–19737.  https://doi.org/10.1039/c2jm34506d CrossRefGoogle Scholar
  38. White CM, Strazisar BR, Granite EJ et al (2003) Separation and Capture of CO 2 from large stationary sources and sequestration in geological formations—coalbeds and deep saline aquifers separation and capture of CO2 from large stationary sources and sequestration in geological formations—coalbeds. J Air Waste Manag Assoc 53:645–715.  https://doi.org/10.1080/10473289.2003.10466206 CrossRefGoogle Scholar
  39. Yu KMK, Curcic I, Gabriel J, Tsang SCE (2008) Recent advances in CO2 capture and utilization. Chemsuschem 1:893–899.  https://doi.org/10.1002/cssc.200800169 CrossRefGoogle Scholar
  40. Zhang JP, Zhu AX, Lin RB et al (2011) Pore surface tailored SOD-type metal-organic zeolites. Adv Mater 23:1268–1271.  https://doi.org/10.1002/adma.201004028 CrossRefGoogle Scholar
  41. Zhu X-W, Zhou X-P, Li D (2016) Exceptionally water stable heterometallic gyroidal MOFs: tuning the porosity and hydrophobicity by doping metal ions. Chem Commun 52:6513–6516.  https://doi.org/10.1039/C6CC02116F CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Nanoscience and Nanotechnology Laboratory, Department of Chemistry, GITAM Institute of ScienceGITAM (Deemed to be University)VisakhapatnamIndia

Personalised recommendations