Advertisement

Environmental Chemistry Letters

, Volume 16, Issue 4, pp 1361–1375 | Cite as

Cyclodextrins, from molecules to applications

  • Grégorio Crini
  • Sophie Fourmentin
  • Éva Fenyvesi
  • Giangiacomo Torri
  • Marc Fourmentin
  • Nadia Morin-Crini
Review
  • 298 Downloads

Abstract

Cyclodextrins are among the most remarkable macrocyclic molecules with significant theoretical and practical impacts in chemistry and biology. Cyclodextrins belong to the family of cage molecules due to their structure, which is composed of a hydrophobic cavity that can encapsulate other molecules. Indeed, the most characteristic feature of these compounds is their ability to form inclusion complexes with various molecules through host–guest interactions. This is at the origin of many applications. It is well known and widely reported in the literature that cyclodextrins and their derivatives have a wide variety of practical applications including pharmacy, medicine, foods, cosmetics, toiletries, catalysis, chromatography, biotechnology, nanotechnology, and textile industry. Cyclodextrins are also the object of numerous fundamental studies. In this review, we chose to highlight selected works on cyclodextrins published over the last 5 years by different research groups. The main objective is to summarize some of the recent developments related to the applications of cyclodextrins.

Keywords

Cyclodextrin Applications Recent overview 

References

  1. Abdel-Halim ES, Fouda MMG, Hamdy I, Abdel-Mohdy FA, El-Sawy SM (2010) Incorporation of chlorohexidin diacetate into cotton fabrics grafted with glycidyl methacrylate and cyclodextrin. Carbohydr Polym 79:47–53.  https://doi.org/10.1016/j.carbpol.2009.07.050 Google Scholar
  2. Agostoni V, Horcajada P, Noiray M, Malanga M, Aykaç A, Jicsinszky L, Vargas-Berenguel A, Semiramoth N, Daoud-Mahammed S, Nicolas V, Martineau C, Taulelle F, Vigneron J, Etcheberry F, Serre C, Gref R (2015) A “green” strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles. Sci Rep 5:7925.  https://doi.org/10.1038/srep07925 Google Scholar
  3. Ahuja A, Baboota S, Ali J, Mustafa G (2011) Cyclodextrins as potential excipients in pharmaceutical formulations: Solubilizing and stabilizing effects. In: Bilensoy E (ed) Cyclodextrins in pharmaceutics, cosmetics and biomedicine. Current and future industrial. Wiley, Hoboken, pp 19–43.  https://doi.org/10.1002/9780470926819 Google Scholar
  4. Alsbaiee A, Smith BJ, Xiao L, Ling YH, Helbling DE, Dichtel WR (2016) Rapid removal of organic micropollutants from water by a porous beta-cyclodextrin polymer. Nature 529:190.  https://doi.org/10.1038/nature16185 Google Scholar
  5. Atteia O, Estrada ED, Bertin H (2013) Soil flushing: a review of the origin of efficiency variability. Rev Environ Sci Bio Technol 12:379–389.  https://doi.org/10.1007/s11157-013-9316-0 Google Scholar
  6. Atwood JL, Steed JW (2004) Encyclopedia of supramolecular chemistry. Marcel Dekker Inc, New YorkGoogle Scholar
  7. Atwood JL, Davies EE, MacNicol DD (1984) Inclusion compounds. Academic, MichiganGoogle Scholar
  8. Aytac Z, Uyar T (2016) Antioxidant activity and photostability of α-tocopherol/β-cyclodextrin inclusion complex encapsulated electrospun polycaprolactone nanofibers. Eur Polym J 79:140–149.  https://doi.org/10.1016/j.eurpolymj.2016.04.029 Google Scholar
  9. Aytac Z, Uyar T (2017) Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: enhanced water solubility and slow release of curcumin. Int J Pharm 518:177–184.  https://doi.org/10.1016/j.ijpharm.2016.12.061 Google Scholar
  10. Aytac Z, Sen HS, Durgun E, Uyar T (2015) Sulfisoxazole/cyclodextrin inclusion complex incorporated in electrospun hydroxypropyl cellulose nanofibers as drug delivery system. Colloids Surf B Biointerf 128:331–338.  https://doi.org/10.1016/j.colsurfb.2015.02.019 Google Scholar
  11. Aytac Z, Yildiz ZI, Kayaci F, San NO, Kusku SI, Durgun E, Tekinay T, Uyar T (2016a) Fast-dissolving, prolonged release and antibacterial cyclodextrin/limonene-inclusion complex nanofibrous webs via polymer-free electrospinning. J Agric Food Chem 64:7325–7334.  https://doi.org/10.1021/acs.jafc.6b02632 Google Scholar
  12. Aytac Z, Yildiz ZI, Kayaci F, San NO, Tekinay T, Uyar T (2016b) Electrospinning of polymer-free cyclodextrin/geraniol-inclusion complex nanofibers: enhanced shelf-life of geraniol with antibacterial and antioxidant properties. RSC Adv 6:46089–46099.  https://doi.org/10.1039/C6RA07088D Google Scholar
  13. Bender ML, Komiyama M (1978) Cyclodextrins chemistry. Springer, BerlinGoogle Scholar
  14. Benkovics G, Fejős I, Darcsi A, Varga E, Malanga M, Fenyvesi É, Sohajda T, Szente L, Sz Béni, Szemán J (2016) Single-isomer carboxymethyl-γ-cyclodextrin as chiral resolving agent for capillary electrophoresis. J Chromatog A 1467:445–453.  https://doi.org/10.1016/j.chroma.2016.06.083 Google Scholar
  15. Bilensoy E (2011) Cyclodextrins in pharmaceutics, cosmetics and biomedicine. Current and future industrial applications. Wiley, Hoboken.  https://doi.org/10.1002/9780470926819 Google Scholar
  16. Bilensoy E, Hincal AA (2009) Recent advances and future directions in amphiphilic cyclodextrin nanoparticles. Expert Opinion Drug Delivery 6:1161–1173.  https://doi.org/10.1517/17425240903222218 Google Scholar
  17. Booij LHDJ (2009) Cyclodextrins and the emergence of sugammadex. Anaesthesia 64:31–37.  https://doi.org/10.1111/j.1365-2044.2008.05868.x Google Scholar
  18. Brackman G, Garcia-Fernandez MJ, Lenoir J, De Meyer L, Remon JP, De Beer T, Concheiro A, Alvarez-Lorenzo C, Coenye T (2016) Dressings loaded with cyclodextrin-hamamelitannin complexes increase Staphylococcus aureus susceptibility toward antibiotics both in single as well as in mixed biofilm communities. Macromol Biosc 16:859–869.  https://doi.org/10.1002/mabi.201500437 Google Scholar
  19. Calo JR, Crandall PG, O’Bryan CA, Ricke SC (2015) Essential oils as antimicrobials in food systems - A review. Food Control 54:111–119.  https://doi.org/10.1016/j.foodcont.2014.12.040 Google Scholar
  20. Campos EVR, de Oliveira JL, Fraceto LF, Singh B (2015) Polysaccharides as safer release systems for agrochemicals. Agron Sustain Dev 35:47–66.  https://doi.org/10.1007/s13593-014-0263-0 Google Scholar
  21. Celebioglu A, Uyar T (2012) Electrospinning of nanofibers from non-polymeric systems: polymer-free nanofibers from cyclodextrin derivatives. Nanoscale 4:621–631.  https://doi.org/10.1039/c1nr11364j Google Scholar
  22. Celebioglu A, Uyar T (2013a) Electrospinning of nanofibers from non-polymeric systems: electrospun nanofibers from native cyclodextrins. J Colloid Int Sci 404:1–7.  https://doi.org/10.1016/j.jcis.2013.04.034 Google Scholar
  23. Celebioglu A, Uyar T (2013b) Electrospun gamma-cyclodextrin (gamma-CD) nanofibers for the entrapment of volatile organic compounds. RSC Adv 3(45):22891–22895.  https://doi.org/10.1039/C3RA44870C Google Scholar
  24. Celebioglu A, Demirci S, Uyar T (2014a) Cyclodextrin-grafted electrospun cellulose acetate nanofibers via click reaction for removal of phenanthrene. Appl Surf Sci 305:581–588.  https://doi.org/10.1016/j.apsusc.2014.03.138 Google Scholar
  25. Celebioglu A, Umu OCO, Tekinay T, Uyar T (2014b) Antibacterial electrospun nanofibers from triclosan/cyclodextrin inclusion complexes. Colloids Surf B Biointerf 116:612–619.  https://doi.org/10.1016/j.colsurfb.2013.10.029 Google Scholar
  26. Celebioglu A, Sen HS, Durgun E, Uyar T (2016) Molecular entrapment of volatile organic compounds (VOCs) by electrospun cyclodextrin nanofibers. Chemosphere 144:736–744.  https://doi.org/10.1016/j.chemosphere.2015.09.029 Google Scholar
  27. Charles J, Bradu C, Morin-Crini N, Sancey B, Winterton P, Torri G, Badot PM, Crini G (2016) Pollutant removal from industrial discharge water using individual and combined effects of adsorption and ion-exchange processes: chemical abatement. J Saudi Chem Soc 20:185–194.  https://doi.org/10.1016/j.jscs.2013.03.007 Google Scholar
  28. Chilajwar SV, Pednekar PP, Jadhav KR, Gupta GJC, Kadam VJ (2014) Cyclodextrin-based nanosponges: a propitious platform for enhancing drug delivery. Expert Opin Drug Deliv 11:111–120.  https://doi.org/10.1517/17425247.2014.865013 Google Scholar
  29. Concheiro A, Alvarez-Lorenzo C (2013) Chemically cross-linked and grafted cyclodextrin hydrogels: from nanostructures to drug-eluting medical devices. Adv Drug Deliv Rev 65:1188–1203.  https://doi.org/10.1016/j.addr.2013.04.015 Google Scholar
  30. Costoya A, Concheiro A, Alvarez-Lorenzo C (2017) Electrospun fibers of cyclodextrins and poly(cyclodextrins). Molecules 22:230.  https://doi.org/10.3390/molecules22020230 Google Scholar
  31. Crini G (2014) Review: a history of cyclodextrins. Chem Rev 114:10940–10975.  https://doi.org/10.1021/cr500081p Google Scholar
  32. Crini G, Fourmentin S, Fenyvesi É, Torri G, Fourmentin M, Morin-Crini N (2018) Fundamentals and applications of cyclodextrins. In: Fourmentin S, Crini G, Lichtfouse E (eds) Environmental chemistry for a sustainable world, vol 1. Springer, Berlin, pp 1–56.  https://doi.org/10.1007/978-3-319-76159-6_1 Google Scholar
  33. Davidson CD, Fishman YI, Puskás I, Szemán J, Sohajda T, McCauliff LA, Sikora J, Storch J, Vanier MT, Szente L, Walkley SU, Dobrenis K (2016) Efficacy and ototoxicity of different cyclodextrins in Niemann-Pick C disease. Ann Clin Transl Neuro 3:366–380.  https://doi.org/10.1002/acn3.306 Google Scholar
  34. Davis F, Higson S (2011) Cyclodextrins. In: Davis F, Higson S (eds) Macrocycles: construction, chemistry and nanotechnology applications. Wiley, New YorkGoogle Scholar
  35. Dinker MK, Kulkarni PS (2015) Recent advances in silica-based materials for the removal of hexavalent chromium: a review. J Chem Eng Data 60:2521–2540.  https://doi.org/10.1021/acs.jced.5b00292 Google Scholar
  36. Dodziuk H (2002) Introduction to supramolecular chemistry. Dordrecht: Kluwer Academic Publishers. ISBN: 0-306-47587-1Google Scholar
  37. Dodziuk H (2006) Cyclodextrins and their complexes. Chemistry, analytical methods, applications. Wiley, Weinheim.  https://doi.org/10.1002/3527608982 Google Scholar
  38. Donati F (2011) Sugammadex: a cyclodextrin-based novel formulation and marketing story. In: Bilensoy E (ed) Cyclodextrins in pharmaceutics, cosmetics and biomedicine: current and future industrial applications. Wiley, Hoboken, pp 363–370.  https://doi.org/10.1002/9780470926819 Google Scholar
  39. Dondoni A, Marra A (2012) Recent applications of thiol-ene coupling as a click process for glycoconjugation. Chem Soc Rev 41:573–586.  https://doi.org/10.1039/c1cs15157f Google Scholar
  40. Dong HQ, Li YY, Li L, Shi DL (2011) Cyclodextrins/polymer based (pseudo)polyrotaxanes for biomedical applications. Prog Chem 23:914–922Google Scholar
  41. Dong RJ, Zhou YF, Huang XH, Zhu XY, Lu YF, Shen J (2015) Functional supramolecular polymers for biomedical applications. Adv Mat 27:498–526.  https://doi.org/10.1002/adma.201402975 Google Scholar
  42. Duchêne D (ed) (1987) Cyclodextrins and their industrial uses. Éditions de Santé, ParisGoogle Scholar
  43. Duchêne D (ed) (1991) New trends in cyclodextrins and derivatives. Éditions de Santé, ParisGoogle Scholar
  44. Euvrard E, Morin-Crini N, Druart C, Bugnet J, Martel B, Cosentino C, Moutarlier V, Crini G (2016) Cross-linked cyclodextrin-based material for treatment of metals and organic substances present in industrial discharge waters. Beilstein J Org Chem 12:1826–1838.  https://doi.org/10.3762/bjoc.12.172 Google Scholar
  45. Faugeras PA, Boens B, Elchinger PH, Brouillette F, Montplaisir D, Zerrouki R, Lucas R (2012) When cyclodextrins meet click chemistry. Eur J Org Chem 22:4087–4105.  https://doi.org/10.1002/ejoc.201200013 Google Scholar
  46. Fenyvesi É, Szente (2016) Nanoencapsulation of flavors and aromas by cyclodextrins. In: Grumezescu A (ed) Encapsulations: Nanotechnology in the agri-food industry, 1st edn, vol 2, pp. 769–792. ISBN: 978-0-12-804378-3Google Scholar
  47. Fenyvesi É, Vikmon MA, Szente L (2016) Cyclodextrins in food technology and human nutrition: benefits and limitations. Crit Rev Food Sci Nutr 56:1981–2004.  https://doi.org/10.1080/10408398.2013.809513 Google Scholar
  48. Fernandes C, Encarnação I, Gaspar A, Garrido J, Borges F, Garrido EM (2014) Influence of hydroxypropyl-cyclodextrin on the photostability of fungicide pyrimethanil. Int J Photoenergy 2014:1–8.  https://doi.org/10.1155/2014/489873 Google Scholar
  49. Fourmentin S, Crini G, Lichtfouse É (2018) Cyclodextrins fundamentals, reactivity and analysis. In: Fourmentin S, Crini G, Lichtfouse É (eds) Environmental chemistry for a sustainable world. Springer, Berlin.  https://doi.org/10.1007/978-3-319-76159-6 Google Scholar
  50. Frömming KH, Szejtli J (1994) Cyclodextrins in pharmacy. Kluwer Academic Publishers, DordrechtGoogle Scholar
  51. Fülöp Z, Kurkov SV, Nielsen TT, Larsen KL, Loftsson T (2012) Self-assembly of cyclodextrins: formation of cyclodextrin polymer based nanoparticles. J Drug Deliv Sci Technol 22:215–221.  https://doi.org/10.1016/S1773-2247(12)50032-8 Google Scholar
  52. Garrido J, Cagide F, Melle-Franco M, Borges F, Garrido EM (2014) Microencapsulation of herbicide MCPA with native β-cyclodextrin and its methyl and hydroxypropyl derivatives: an experimental and theoretical investigation. J Mol Struct 1061:76–81.  https://doi.org/10.1016/j.molstruc.2013.12.067 Google Scholar
  53. Ghemati D, Aliouche D (2014) Dye adsorption behavior of polyvinyl alcohol/glutaraldehyde/beta-cyclodextrin polymer membranes. J Appl Spectroscopy 81(2):257–263.  https://doi.org/10.1007/s10812-014-9919-4 Google Scholar
  54. Gibson LT (2014) Mesosilica materials and organic pollutant adsorption: part B—removal from aqueous solution. Chem Soc Rev 43(15):5173–5182.  https://doi.org/10.1039/C3CS60095E Google Scholar
  55. Glick D, Barth S, MacLeod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12.  https://doi.org/10.1002/path.2697 Google Scholar
  56. Gontero D, Lessard-Viger M, Brouard D, Bracamonte AG, Boudreau D, Veglia AV (2017) Smart multifunctional nanoparticles design as sensors and drug delivery systems based on supramolecular chemistry. Microchem J 130:316–328.  https://doi.org/10.1016/j.microc.2016.10.007 Google Scholar
  57. Gonzalez-Gaitano G, Rodriguez P, Isasi JR, Fuentes M, Tardajos G, Sanchez M (2003) The aggregation of cyclodextrins as studied by photon correlation spectroscopy. J Incl Phenom Macrocycl Chem 44:101–105.  https://doi.org/10.1023/A:1023065823358 Google Scholar
  58. Goyal AK, Johal ES, Rath G (2011) Nanotechnology for water treatment. Curr Nanosci 7:640–654.  https://doi.org/10.2174/157341311796196772 Google Scholar
  59. Gruiz K, Molnár M, Fenyvesi É, Cs Hajdu, Atkári Á, Barkács K (2011) Cyclodextrins in innovative engineering tools for risk-based environmental management. J Incl Phenom Macro 70:299–306.  https://doi.org/10.1007/s10847-010-9909-y Google Scholar
  60. Grumezescu AM (2016) Encapsulations. In: nanotechnology in the agri-food industry, 1st edn, vol 2. Academic Press, Elsevier. ISBN: 978-0-12-804378-3Google Scholar
  61. Hapiot F, Tilloy S, Monflier E (2006) Cyclodextrins as supramolecular hosts for organometallic complexes. Chem Rev 106:767–781.  https://doi.org/10.1021/cr050576c Google Scholar
  62. Hapiot F, Ponchel A, Tilloy S, Monflier E (2011) Cyclodextrins and their applications in aqueous-phase metal-catalyzed reactions. C R Chim 14:149–166.  https://doi.org/10.1016/j.crci.2010.04.003 Google Scholar
  63. Hapiot F, Bricout H, Menuel S, Tilloy S, Monflier E (2014) Recent breakthroughs in aqueous cyclodextrin-assisted supramolecular catalysis. Catal Sci Technol 4:1899–1908.  https://doi.org/10.1039/C4CY00005F Google Scholar
  64. He Y, Fu P, Shen X, Gao H (2008) Cyclodextrin-based aggregates and characterization by microscopy. Micron 39:495–516.  https://doi.org/10.1016/j.micron.2007.06.017 Google Scholar
  65. Hebeish A, El-Hilw ZH (2001) Chemical finishing of cotton using reactive cyclodextrin. Color Technol 117:104–110.  https://doi.org/10.1111/j.1478-4408.2001.tb00343.x Google Scholar
  66. Hirakawa H, Tomita H (2013) Interference of bacterial cell-to-cell communication: a new concept of antimicrobial chemotherapy breaks antibiotic resistance. Front Microbiol.  https://doi.org/10.3389/fmicb.2013.00114 Google Scholar
  67. Ho TM, Howes T, Bhandari BR (2014) Encapsulation of gases in powder solid matrices and their applications: a review. Powder Technol 259:87–108.  https://doi.org/10.1016/j.powtec.2014.03.054 Google Scholar
  68. Hong SB, Liu MY, Zhang W, Deng W (2015) Organic reactions catalyzed by cyclodextrin and its derivatives. Chin J Org Chem 35:325–336.  https://doi.org/10.6023/cjoc201409001 Google Scholar
  69. Hongdeng Q, Xiaojing L, Min S, Shengxiang J (2011) Development of silica-based stationary phases for high-performance liquid chromatography. Anal Bioanal Chem 399:3307–3322.  https://doi.org/10.1007/s00216-010-4611-x Google Scholar
  70. Hou XS, Ke CF, Stoddart JF (2016) Cooperative capture synthesis: yet another playground for copper-free click chemistry. Chem Soc Rev 45:3766–3780.  https://doi.org/10.1039/c6cs00055j Google Scholar
  71. Hougier EG, Kircik L (2012) A review of delivery systems in cosmetics. Dermatol Therm 25:234–237.  https://doi.org/10.1111/j.1529-8019.2012.01501.x Google Scholar
  72. Idriss H, Estour F, Zgani I, Barbot C, Biscotti A, Petit S, Galaup C, Hubert-Roux M, Nicol L, Mulder P, Gouhier G (2013) Effect of the second coordination sphere on new contrast agents based on cyclodextrin scaffolds for MRI signals. RSC Adv 3:4531.  https://doi.org/10.1039/C3RA40314A Google Scholar
  73. Islam SU, Shahid M, Mohammad F (2013) Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers: a review. Ind Eng Chem Res 52:5245–5260.  https://doi.org/10.1021/ie303627x Google Scholar
  74. Jansook P, Ogawa N, Loftsson T (2018) Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int J Pharm 535:272–284.  https://doi.org/10.1016/j.ijpharm.2017.11.018 Google Scholar
  75. Karim AA, Loh XJ (2016) Towards cyclodextrin-based supramolecular materials. In: Polymers for personnal care products and cosmetics, pp 154–177.  https://doi.org/10.1039/9781782623984-00154
  76. Karoyo AH, Wilson LD (2015) Nano-sized cyclodextrin-based molecularly imprinted polymer adsorbents for perfluorinated compounds: a mini-review. Nanomater 5:981–1003.  https://doi.org/10.3390/nano5020981 Google Scholar
  77. Kayaci F, Uyar T (2012) Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: prolonged shelf-life and high temperature stability of vanillin. Food Chem 133:641–649.  https://doi.org/10.1016/j.foodchem.2012.01.040 Google Scholar
  78. Kayaci F, Uyar T (2014) Electrospun polyester/cyclodextrin nanofibers for entrapment of volatile organic compounds. Polym Eng Sci 54(12):2970–2978.  https://doi.org/10.1002/pen.23858 Google Scholar
  79. Kayaci F, Aytac Z, Uyar T (2013a) Surface modification of electrospun polyester nanofibers with cyclodextrin polymer for the removal of phenanthrene from aqueous solution. J Hazard Mat 261:286–294.  https://doi.org/10.1016/j.jhazmat.2013.07.041 Google Scholar
  80. Kayaci F, Umu OCO, Tekinay T, Uyar T (2013b) Antibacterial electrospun polylactic acid (PLA) nanofibrous webs incorporating triclosan/cyclodextrin inclusion complexes. J Agric Food Chem 61:3901–3908.  https://doi.org/10.1021/jf400440b Google Scholar
  81. Kayaci F, Ertas Y, Uyar T (2013c) Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers. J Agric Food Chem 61:8156–8165.  https://doi.org/10.1021/jf402923c Google Scholar
  82. Kayaci F, Sen HS, Durgun E, Uyar T (2014) Functional electrospun polymeric nanofibers ıncorporating geraniol-cyclodextrin ınclusion complexes: high thermal stability and enhanced durability of geraniol. Food Res Int 62:424–431.  https://doi.org/10.1016/j.foodres.2014.03.033 Google Scholar
  83. Kayaci F, Sen HS, Durgun E, Uyar T (2015) Electrospun nylon 6,6 nanofibers functionalized with cyclodextrins for removal of toluene vapor. J Appl Polym Sci 132:41941.  https://doi.org/10.1002/app.41941 Google Scholar
  84. Keskin NOS, Celebioglu A, Uyar T, Tekinay T (2015a) Microalgae immobilized by nanofibrous web for removal of reactive dyes from wastewater. Ind Eng Chem Res 54:5802–5809.  https://doi.org/10.1021/acs.iecr.5b01033 Google Scholar
  85. Keskin NOS, Celebioglu A, Sarioglu OF, Ozkan AD, Uyar T, Tekinay T (2015b) Removal of a reactive dye and hexavalent chromium by a reusable bacteria attached electrospun nanofibrous web. RSC Adv 5:86867–86874.  https://doi.org/10.1039/C5RA15601G Google Scholar
  86. Kfoury M, Hădărugă NG, Hădărugă DI, Fourmentin S (2016) Cyclodextrins as encapsulation material for flavors and aroma. In: Encapsulations: nanotechnology in the agri-food industry, 1st edn, vol 2, chapter 4, pp. 127-192. ISBN: 978-0-12-804378-3Google Scholar
  87. Khaoulani S, Chaker H, Cadet C, Bychkov E, Cherif L, Bengueddach A, Fourmentin S (2015) Wastewater treatment by cyclodextrin polymers and noble metal/mesoporous TiO2 photocatalysts. C R Chim 18:23–31.  https://doi.org/10.1016/j.crci.2014.07.004 Google Scholar
  88. Kozlowski CA, Sliwa W (2010) Use of cyclodextrin polymers in separation of organic species. In: Polymer science and technology series. Nova Science Publishers, Inc, New YorkGoogle Scholar
  89. Kurkov SV, Loftsson T (2013) Cyclodextrins. Int J Pharm 453:167–180.  https://doi.org/10.1016/j.ijpharm.2012.06.055 Google Scholar
  90. Kushwaha D, Dwivedi P, Kuanar SK, Tiwari VK (2013) Click reaction in carbohydrate chemistry: recent developments and future perspective. Curr Org Synth 10:90–135.  https://doi.org/10.2174/1570179411310010005 Google Scholar
  91. Landy D, Mallard I, Ponchel A, Monflier E, Fourmentin S (2012) Cyclodextrins for remediation technologies. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Environmental chemistry for a sustainable world: nanotechnology and health risk, 1. Springer, Berlin, pp 47–81Google Scholar
  92. Lay S, Ni XF, Yu HN, Shen SR (2016) State-of-the-art applications of cyclodextrins as functional monomers in molecular imprinting techniques: a review. J Sep Sci 39:2321–2331.  https://doi.org/10.1002/jssc.201600003 Google Scholar
  93. Lee SY, Park SJ (2015) A review on solid adsorbents for carbon dioxide capture. J Ind Eng Chem 23:1–11.  https://doi.org/10.1016/j.jiec.2014.09.001 Google Scholar
  94. Li S, Vigh G (2004) Single-isomer sulfated alpha-cyclodextrins for capillary electrophoresis: hexakis(2,3-di-O-methyl-6-O-sulfo)-alpha-cyclodextrin, synthesis, analytical characterization, and initial screening tests. Electrophoresis 25:2657–2670.  https://doi.org/10.1002/elps.200405839 Google Scholar
  95. Li JJ, Zhao F, Li J (2011) Polyrotaxanes for applications in life science and biotechnology. Appl Microbiol Biotechnol 90:427–443.  https://doi.org/10.1007/s00253-010-3037-x Google Scholar
  96. Loftsson T, Brewster ME (2010) Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol 62:1607–1621.  https://doi.org/10.1111/j.2042-7158.2010.01030.x Google Scholar
  97. Loftsson T, Brewster ME (2012) Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J Pharm Pharm 101:3019–3032.  https://doi.org/10.1002/jps.23077 Google Scholar
  98. Loftsson T, Masson M, Brewster ME (2004) Self-association of cyclodextrins and cyclodextrin complexes. J Pharm Sci 93:1091–1099.  https://doi.org/10.1002/jps.20047 Google Scholar
  99. López-Nicolás JM, Rodríguez-Bonilla P, García-Carmona F (2014) Cyclodextrins and antioxidants. Crit Rev Food Sci Nutr 54:251–276.  https://doi.org/10.1080/10408398.2011.582544 Google Scholar
  100. Luca C, Grigoriu AM (2007) Cyclodextrins inclusion compounds in macromolecular chemistry. Cell Chem Technol 41:1–12Google Scholar
  101. Macaev F, Boldescu V (2015) Cyclodextrins in asymmetric and stereospecific synthesis. Symmetry Basel 7:1699–1720.  https://doi.org/10.3390/sym7041699 Google Scholar
  102. Maetzel D, Sarkar S, Wang H, Abi-Mosleh L, Xu P, Cheng AW, Gao Q, Mitalipova M, Jaenisch R (2014) Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick Type C patient-specific iPS cells. Stem Cell Rep 2:866–880.  https://doi.org/10.1016/j.stemcr.2014.03.014 Google Scholar
  103. Mahmud ST, Wilson LD (2016) Synthesis and characterization of surface-modified mesoporous silica materials with beta-cyclodextrin. Cogent Chem 2:1132984.  https://doi.org/10.1080/23312009.2015.1132984 Google Scholar
  104. Manchon JFM, Uzor NE, Kesler SR, Wefel JS, Townley DM, Nagaraja AS, Pradeep S, Mangala LS, Sood AK, Tsvetkov AS (2016) TFEB ameliorates the impairment of the autophagy-lysosome pathway in neurons induced by doxorubicin. Aging (US) 8:3507–3519.  https://doi.org/10.18632/aging.101144 Google Scholar
  105. Martel B, Morcellet M, Ruffin D, Vinet F, Weltrowski L (2002) Capture and controlled release of fragrances by CD finished textiles. J Incl Phenom Macrocycl Chem 44:439–442.  https://doi.org/10.1023/A:1023028105012 Google Scholar
  106. Martina K, Binello A, Lawson D, Jicsinszky L, Cravotto G (2013) Recent applications of cyclodextrins as food additives and in food processing. Curr Nutr Food Sci 9:167–179.  https://doi.org/10.2174/1573401311309030001 Google Scholar
  107. Mavridis IM, Yannakopoulou K (2015) Anionic cyclodextrins as versatile hosts for pharmaceutical nanotechnology: synthesis, drug delivery, enantioselectivity, contrast agents for MRI. Int J Pharma 492:275–290.  https://doi.org/10.1016/j.ijpharm.2015.06.004 Google Scholar
  108. Meng QR, Bai J, Li CP, Huang YR, Liu H, Li HQ (2014) Electrospun functional cyclodextrins/polystyrene (PS) composite nanofibers and their applications for sorption of Cu (II) ions under aqueous solution. Nanosci Nanotechnol Lett 6:289–294.  https://doi.org/10.1166/nnl.2014.1768 Google Scholar
  109. Messner M, Kurkov SV, Jansook T, Loftsson T (2010) Self-assembled cyclodextrin aggregates and nanoparticles. Int J Pharm 387:199–208.  https://doi.org/10.1016/j.ijpharm.2009.11.035 Google Scholar
  110. Miller KP, Wang L, Chen YP, Pellechia PJ, Benicewicz BC, Decho AW (2015) Engineering nanoparticles to silence bacterial communication. Front Microbiol 6:189.  https://doi.org/10.3389/fmicb.2015.00189 Google Scholar
  111. Morin-Crini N, Crini G (2013) Environmental applications of water-insoluble & β-cyclodextrin-epichlorohydrin polymers. Prog Polym Sci 38:344–368.  https://doi.org/10.1016/j.progpolymsci.2012.06.005 Google Scholar
  112. Morin-Crini N, Fourmentin S, Crini G (eds) (2015) Cyclodextrines. Besançon: PUFC. ISBN: 978-2-84867-520-6Google Scholar
  113. Morohoshi T, Tokita K, Ito S, Saito Y, Maeda S, Kato K, Ikeda T (2013) Inhibition of quorum sensing in gram-negative bacteria by alkylamine-modified cyclodextrins. J Biosci Bioeng 116:175–179.  https://doi.org/10.1016/j.jbiosc.2013.01.022 Google Scholar
  114. Motoyama K, Hirai Y, Nishiyama R, Maeda Y, Higashi T, Ishitsuka Y, Kondo Y, Irie T, Era T, Arima H (2015) Cholesterol lowering effects of mono-lactose-appended beta-cyclodextrin in Niemann-Pick type C disease-like HepG2 cells. Beilstein J Org Chem 11:2079–2086.  https://doi.org/10.3762/bjoc.11.224 Google Scholar
  115. Motoyama K, Nishiyama R, Maeda Y, Higashi T, Kawaguchi Y, Futaki S, Ishitsuka Y, Kondo Y, Irie T, Era T, Arima H (2016) Cholesterol-lowering effect of octaarginine-appended beta-cyclodextrin in Npc1-Trap-CHO cells. Biol Pharm Bull 39:1823–1829.  https://doi.org/10.1248/bpb.b16-00369 Google Scholar
  116. Moya-Ortega M, Alvarez-Lorenzo C, Concheiro A, Loftsson T (2012) Cyclodextrin-based nanogels for pharmaceuticals and biomedical applications. Int J Pharm 428:152–163.  https://doi.org/10.1016/j.ijpharm.2012.02.038 Google Scholar
  117. Nagy ZM, Molnár M, Fekete-Kertész I, Molnár-Perl I, Fenyvesi É, Gruiz K (2014) Removal of emerging micropollutants from water using cyclodextrins. Sci Total Environ 485–486:711–719.  https://doi.org/10.1016/j.scitotenv.2014.04.003 Google Scholar
  118. Nielsen TT, Wintgens V, Amiel C, Wimmer R, Larsen KL (2010) Facile synthesis of β-cyclodextrin-dextran polymers by “click” chemistry. Biomacromol 11:1710–1715.  https://doi.org/10.1021/bm9013233 Google Scholar
  119. Norena-Caro D, Alvarez-Lainez M (2016) Functionalization of polyacrylonitrile nanofibers with beta-cyclodextrin for the capture of formaldehyde. Mater Des 95:632–640.  https://doi.org/10.1016/j.matdes.2016.01.106 Google Scholar
  120. Okano C, Nasuno E, Iimura K, Kato N (2016) Cyclodextrin-immobilized microspheres for uptake of the quorum-sensing signaling molecule N-acylhomoserine lactone. J Appl Polym Sci.  https://doi.org/10.1002/app.43198 Google Scholar
  121. Oliveri V, Vecchio G (2016) Cyclodextrins as protective agents of protein aggregation: an overview. Chem Asian J 11:1648–1657.  https://doi.org/10.1002/asia.201600259 Google Scholar
  122. Perez-Anes A, Gargouri M, Laure W, Van Den Berghe H, Courcot E, Sobocinski J, Tabary N, Chai F, Blach JF, Addad A, Woisel P, Douroumis D, Martel B, Blanchemain N, Lyskawa J (2015) Bioinspired titanium drug eluting platforms based on a poly-beta-cyclodextrin-chitosan layer-by-layer self-assembly targeting infections. ACS Appl Mat Int 7:12882–12893.  https://doi.org/10.1021/acsami.5b02402 Google Scholar
  123. Romi R, Nostro PL, Bocci E, Ridi F, Baglioni P (2005) Bioengineering of a cellulosic fabric for insecticide delivery via grafted cyclodextrin. Biotechnol Prog 21:1724–1730.  https://doi.org/10.1021/bp050276g Google Scholar
  124. Ryzhakov A, Thi TD, Stappaerts J, Bertoletti L, Kimpe K, Couto ARS, Saokham P, Van den Mooter G, Augustijns P, Somsen GW, Kurkov S, Inghelbrecht S, Arien A, Jimidar MI, Schrijnemakers K, Loftsson T (2016) Self-assembly of cyclodextrins and their complexes in aqueous solutions. J Pharm Sci 105:2556–2569.  https://doi.org/10.1016/j.xphs.2016.01.019 Google Scholar
  125. Samiey B, Cheng CH, Wu JG (2014) Organic-inorganic hybrid polymers as adsorbent for removal of heavy metal ions from solutions: a review. Materials 7:673–726.  https://doi.org/10.3390/ma7020673 Google Scholar
  126. Saokham P, Loftsson T (2017) γ-Cyclodextrin. Int J Pharm 516:278–292.  https://doi.org/10.1016/j.ijpharm.2016.10.062 Google Scholar
  127. Schmidt BVKJ, Hetzer M, Ritter H, Barner-Kowollik C (2014) Complex macromolecular architecture design via cyclodextrin host/guest complexes. Prog Polym Sci 39:235–249.  https://doi.org/10.1016/j.progpolymsci.2013.09.006 Google Scholar
  128. Schneider HJ (2012) Applications of supramolecular chemistry. CRC Press, Taylor & Francis Group, Boca RatonGoogle Scholar
  129. Schneider HJ, Yatsimirsky AK (2000) Principles and methods in supramolecular chemistry. Wiley, ChichesterGoogle Scholar
  130. Scriba GKE (2016) Chiral recognition in separation science: an update. J Chromatogr A 1467:56–78.  https://doi.org/10.1016/j.chroma.2016.05.061 Google Scholar
  131. Senthamizhan A, Balusamy B, Celebioglu A, Uyar T (2016) Nanotraps in porous electrospun fibers for effective removal of lead(II) in water. J Mater Chem A 4:2484–2493.  https://doi.org/10.1039/C5TA09166G Google Scholar
  132. Sharma N, Baldi A (2016) Exploring versatile applications of cyclodextrins: an overview. Drug Deliv 23:739–757.  https://doi.org/10.3109/10717544.2014.938839 Google Scholar
  133. Silva A, Duarte A, Sousa S, Ramos A, Domingues FC (2016) Characterization and antimicrobial activity of cellulose derivatives films incorporated with a resveratrol inclusion complex. WT-Food Sci Technol 73:481–489.  https://doi.org/10.1016/j.lwt.2016.06.043 Google Scholar
  134. Simoes SMN, Veiga F, Torres-Labandeira JJ, Ribeiro ACF, Concheiro A, Alvarez-Lorenzo C (2014) Syringeable self-assembled cyclodextrin gels for drug delivery. Curr Topics Med Chem 14:494–509.  https://doi.org/10.2174/1568026613666131219124308 Google Scholar
  135. Szejtli J (1982) Cyclodextrins and their inclusion complexes. Akademiai Kiado, BudapestGoogle Scholar
  136. Szejtli J (1988) Cyclodextrin technology. Kluwer Academic Publishers, DordrechtGoogle Scholar
  137. Szejtli J, Osa T (1996) Comprehensive supramolecular chemistry. In: Szejtli J, Osa T (eds) Cyclodextrins, vol 3. Pergamon, OxfordGoogle Scholar
  138. Taka AL, Pillay K, Mbianda XY (2017) Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from waste water: a review. Carbohydr Polym 159:94–107.  https://doi.org/10.1016/j.carbpol.2016.12.027 Google Scholar
  139. Tamura A, Yui N (2015) beta-Cyclodextrin-threaded biocleavable polyrotaxanes ameliorate impaired autophagic flux in Niemann-Pick type C disease. J Biol Chem 290:9442–9454.  https://doi.org/10.1074/jbc.M114.636803 Google Scholar
  140. Tan S, Ladewig K, Fu Q, Blencowe A, Qiao GG (2014) Cyclodextrin-based supramolecular assemblies and hydrogels: recent advances and future perspectives. Macromol Rapid Comm 35:1166–1184.  https://doi.org/10.1002/marc.201400080 Google Scholar
  141. Tanaka Y, Yamada Y, Ishitsuka Y, Matsuo M, Shiraishi K, Wada K, Uchio Y, Kondo Y, Takeo T, Nakagata N, Higashi T, Motoyama K, Arima H, Mochinaga S, Higaki K, Ohno K, Irie T (2015) Efficacy of 2-hydroxypropyl-β-cyclodextrin in Niemann-pick disease type C model mice and its pharmacokinetic analysis in a patient with the disease. Biol Pharm Bull 38:844–851.  https://doi.org/10.1248/bpb.b14-00726 Google Scholar
  142. Tejashri G, Amrita B, Darshana J (2013) Cyclodextrin based nanosponges for pharmaceutical use: a review. Acta Pharm 63:335–358.  https://doi.org/10.2478/acph-2013-0021 Google Scholar
  143. Tong J, Chen LG (2013) Review: preparation and application of magnetic chitosan derivatives in separation processes. Anal Lett 46:2635–2656.  https://doi.org/10.1080/00032719.2013.807815 Google Scholar
  144. Trotta F, Dianzani C, Caldera F, Mognetti B, Cavalli R (2014) The application of nanosponges to cancer drug delivery. Expert Opin Drug Deliv 11–6:931–941.  https://doi.org/10.1517/17425247.2014.911729 Google Scholar
  145. Trotta F, Caldera F, Dianzani C, Argenziano M, Barrera G, Cavalli R (2015) New glutathione bio-responsive cyclodextrin nanosponges. ChemPlusChem 81:439–443.  https://doi.org/10.1002/cplu.201500531 Google Scholar
  146. Tungala K, Adhikary P, Krishnamoorthi S (2013) Trimerization of β-cyclodextrin through the click reaction. Carbohydr Polym 95:295–298.  https://doi.org/10.1016/j.carbpol.2013.02.074 Google Scholar
  147. Valente AJM, Söderman O (2014) The formation of host-guest complexes between surfactants and cyclodextrins. Adv Colloid Int 205:156–176.  https://doi.org/10.1016/j.cis.2013.08.001 Google Scholar
  148. Valetti S, Xia X, Costa-Gouveia J, Brodin P, Bernet-Camard MF, Andersson M, Feiler A (2017) Clofazimine encapsulation in nanoporous silica particles for the oral treatment of antibiotic-resistant mycobacterium tuberculosis infections. Nanomedicine.  https://doi.org/10.2217/nnm-2016-0364 Google Scholar
  149. Vecsernyés M, Fenyvesi F, Bácskay I, Deli MA, Szente L, Fenyvesi É (2014) Cyclodextrins, blood-brain barrier, and treatment of neurological diseases. Arch Med Res 45:711–729.  https://doi.org/10.1016/j.arcmed.2014.11.020 Google Scholar
  150. Venturini CDG, Nicolini J, Machado C, Machado VG (2008) Properties and recent applications of cyclodextrins. Quim Nova 31:360–368.  https://doi.org/10.1590/S0100-40422008000200032 Google Scholar
  151. Villalonga R, Cao R, Fragoso A (2007) Supramolecular chemistry of cyclodextrin in enzyme technology. Chem Rev 107:3088–3116.  https://doi.org/10.1021/cr050253g Google Scholar
  152. Voncina B, Vivod V (2013) Cyclodextrins in textile finishing. In: Günay M (ed) Textile dyeing. InTech, Rijeka, pp 53–75.  https://doi.org/10.5772/53777 Google Scholar
  153. Vunain E, Mishra AK, Mamba BB (2016) Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: a review. Int J Biol Macromol 86:570–586.  https://doi.org/10.1016/j.ijbiomac.2016.02.005 Google Scholar
  154. Walkley SU, Davidson CD, Jacoby J, Marella PD, Ottinger EA, Austin CP, Porter FD, Vite CH, Ory DS (2016) Fostering collaborative research for rare genetic disease: the example of niemann-pick type C disease. Orphanet J Rare Dis 11:161.  https://doi.org/10.1186/s13023-016-0540-x Google Scholar
  155. Ward C, Martinez-Lopez N, Otten EG, Carroll B, Maetzel D, Singh R, Sarkar S, Korolchuk VI (2016) Autophagy, lipophagy and lysosomal lipid storage disorders. Biochim Biophys Acta Mol Cell Biol Lipids 1861:269–284.  https://doi.org/10.1016/j.bbalip.2016.01.006 Google Scholar
  156. Wei ZZ, Liu YL, Hu HM, Yu JY, Li FX (2016) Biodegradable poly(butylene succinate-co-terephthalate) nanofibrous membranes functionalized with cyclodextrin polymer for effective methylene blue adsorption. RSC Adv 6:108240–108246.  https://doi.org/10.1039/C6RA22941G Google Scholar
  157. West C (2014) Enantioselective separations with supercritical fluids: review. Curr Anal Chem 10:99–120.  https://doi.org/10.2174/1573411011410010009 Google Scholar
  158. Wu HQ, Kong JH, Yao XY, Zhao CY, Dong YL, Lu XH (2015a) Polydopamine-assisted attachment of beta-cyclodextrin on porous electrospun fibers for water purification under highly basic condition. Chem Eng J 270:101–109.  https://doi.org/10.1016/j.cej.2015.02.019 Google Scholar
  159. Wu ZL, Song N, Menz R, Pingali B, Yang YW, Zheng YB (2015b) Nanoparticles functionalized with supramolecular host-guest systems for nanomedicine and healthcare. Nanomedicine 10:1493–1514.  https://doi.org/10.2217/NNM.15.1 Google Scholar
  160. Xiao Y, Ng SC, Tan TTY, Wang Y (2012) Recent development of cyclodextrin chiral stationary phases and their applications in chromatography. J Chromatogr A 1269:52–68.  https://doi.org/10.1016/j.chroma.2012.08.049 Google Scholar
  161. Xiao N, Wen Q, Liu QW, Yang QB, Li YX (2014) Electrospinning preparation of beta-cyclodextrin/glutaraldehyde crosslinked PVP nanofibrous membranes to adsorb dye in aqueous solution. Chem Res Chin Univ 30:1057–1062.  https://doi.org/10.1007/s40242-014-4203-y Google Scholar
  162. Yamamoto E, Kuroda K (2016) Colloidal mesoporous silica nanoparticles. Bull Chem Soc Jpn 89:501–539.  https://doi.org/10.1246/bcsj.20150420 Google Scholar
  163. Yang LPH, Keam SJ (2009) Sugammadex: a review of its use in anaesthetic practice. Drugs 69:919–942.  https://doi.org/10.2165/00003495-200969070-00008 Google Scholar
  164. Yokoo M, Kubota Y, Motoyama K, Higashi T, Taniyoshi M, Tokommaru H, Nishiyama R, Tabe Y, Mochinaga S, Sato A, Sueoka-Aragane N, Sueoka E, Arima H, Irie T, Kimura S (2015) 2-Hydroxypropyl-β-cyclodextrin acts as a novel anticancer agent. PlosOne 10:e0141946.  https://doi.org/10.1371/journal.pone.0141946 Google Scholar
  165. Yuan Z, Zhang L (2016) Photoinduced controlled-release drug delivery systems for applications in nanomedicine. Curr Org Chem 20:1768–1785.  https://doi.org/10.2174/1385272820666160112001944 Google Scholar
  166. Yusoff SNM, Kamari A, Aljafree NFA (2016) A review of materials used as carrier agents in pesticide formulations. Int J Environ Sci Technol 13:2977–2994.  https://doi.org/10.1007/s13762-016-1096-y Google Scholar
  167. Zarzycki PK, Fenert BE, Głód BK (2016) Cyclodextrins-based nanocomplexes for encapsulation of bioactive compounds in food, cosmetics, and pharmaceutical products: principles of supramolecular complexes formation, their influence on the antioxidative properties of target chemicals, and recent advances in selected industrial applications. In: Grumezescu A (ed) Encapsulations: nanotechnology in the agri-food industry, pp. 717–767. ISBN: 978-0-12-804378-3Google Scholar
  168. Zgani I, Idriss H, Barbot C, Djedaïni-Pilard F, Petit S, Hubert-Roux M, Estour F, Gouhier G (2017) Positive variation of the MRI signal via intramolecular inclusion complexation of a C-2 functionalized & β-cyclodextrin. Org Biomol Chem 15:564–569.  https://doi.org/10.1039/c6ob02583h Google Scholar
  169. Zhang J, Ma PX (2013) Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev 65:1215–1233.  https://doi.org/10.1016/j.addr.2013.05.001 Google Scholar
  170. Zhang XM, Li HZ, Cao ML, Shi L, Chen CY (2015) Adsorption of basic dyes on beta-cyclodextrin functionalized poly (styrene-alt-maleic anhydride). Sep Sci Technol 50:947–957.  https://doi.org/10.1080/01496395.2014.978461 Google Scholar
  171. Zhao R, Wang Y, Li X, Sun BL, Wang C (2015) Synthesis of beta-cyclodextrin-Based electrospun nanofiber membranes for highly efficient adsorption and separation of methylene Blue. ACS Appl Mat Int 7:26649–26657.  https://doi.org/10.1021/acsami.5b08403 Google Scholar
  172. Zhou JW, Ritter H (2010) Cyclodextrin functionalized polymers as drug delivery systems. Polym Chem 1:1552–1559.  https://doi.org/10.1039/c0py00219d Google Scholar
  173. Zimmer S, Grebe A, Bakke SS, Bode N, Halvorsen B, Ulas T, Skjelland M, De Nardo D, Labzin LI, Kerksiek A, Hempel C, Heneka MT, Hawxhurst V, Fitzgerald ML, Trebicka J, Bjorkhem I, Gustafsson JA, Westerterp M, Tall AR, Wright SD, Espevik T, Schultze JL, Nickenig G, Lutjohann D, Latz E (2016) Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Sci Translation Medicine.  https://doi.org/10.1126/scitranslmed.aad6100 Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UFR Sciences et Techniques, Laboratoire Chrono-environnement, UMR 6249Université de Bourgogne Franche-ComtéBesançon CedexFrance
  2. 2.Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV EA 4492), SFR Condorcet FR CNRS 3417ULCODunkerqueFrance
  3. 3.CycloLab Cyclodextrin Research and Development Ltd.BudapestHungary
  4. 4.Istituto di Chimica e Biochimica G. RonzoniMilanItaly
  5. 5.Laboratoire de Physico-Chimie de l’Atmosphère (LPCA, EA 4493)Université du Littoral Côte d’Opale (ULCO)DunkerqueFrance

Personalised recommendations