Advertisement

Environmental Chemistry Letters

, Volume 16, Issue 4, pp 1339–1359 | Cite as

Phytoremediation of heavy metals: mechanisms, methods and enhancements

  • S. Muthusaravanan
  • N. Sivarajasekar
  • J. S. Vivek
  • T. Paramasivan
  • Mu. Naushad
  • J. Prakashmaran
  • V. Gayathri
  • Omar K. Al-Duaij
Review

Abstract

Polluted soil and water impact the quality of food and nutrients of human and animal biota. Soil and water are mainly polluted by effluent discharges from industries, which are broadly classified into metallic and nonmetallic pollutant-bearing effluents. In order to tackle this problem, a plant-based technology called phytoremediation is used to clean contaminated lands. Phytoremediation is based upon several processes such as phytodegradation, phytovolatilization, phytoaccumulation and phytoextraction. These methods are efficient, eco-friendly and economic. This paper reviews the methods and mechanisms involved in phytoremediation of heavy metals, and enhancement processes.

Keywords

Heavy metals Phytoremediation Eco-friendly Mechanism Enhancement 

Abbreviations

TPH

Total petroleum products

PAH

Polycyclic aromatic hydrocarbons

CDTA

Cyclohexane-1,2-diamine tetra-acetic acid

EDTA

Ethylene diamine tetra-acetic acid

DTPA

Diethylenetriamine pentaacetic acid

EGTA

Ethylene glycol-bis-(beta-amino-ethyl ether) N,N,N′,N′-tetra-acetic acid

NTA

Nitrilo triacetic acid

MMA

Monomethylarsenate

References

  1. Abioye OP, Agamuthu P, Abdul Aziz A (2010) Phytoaccumulation of zinc and iron by jatropha curcas grown in used lubricating oil-contaminated soil. Malays J Sci 29:207–213Google Scholar
  2. Adhikari T, Kumar A (2012) Phytoaccumulation and tolerance of Riccinus communis L. to nickel. Int J Phytoremediat 14:481–492.  https://doi.org/10.1080/15226514.2011.604688 Google Scholar
  3. Ahlfeld DP, Heidari M (1994) Applications of optimal hydraulic control to ground-water systems. J Water Resour Plan Manag 120:350–365.  https://doi.org/10.1061/(ASCE)0733-9496(1994)120:3(350) Google Scholar
  4. Alam MM, Alothman ZA, Naushad M (2013) Analytical and environmental applications of polyaniline Sn(IV) tungstoarsenate and polypyrrole polyantimonic acid composite cation-exchangers. J Ind Eng Chem 19:1973–1980Google Scholar
  5. Ali NA, Bernal MP, Ater M (2002) Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant Soil 239:103–111Google Scholar
  6. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881.  https://doi.org/10.1016/j.chemosphere.2013.01.075 Google Scholar
  7. Alkorta I, Hernández-Allica J, Becerril JM et al (2004) Chelate-enhanced phytoremediation of soils polluted with heavy metals. Rev Environ Sci Biotechnol 3:55–70.  https://doi.org/10.1023/B:RESB.0000040057.45006.34 Google Scholar
  8. AlOthman ZA, Naushad M, Nilchi A (2011) Development, characterization and ion exchange thermodynamics for a new crystalline composite cation exchange material: application for the removal of Pb2+ ion from a standard sample (Rompin Hematite). J Inorg Organomet Polym 21:547–559Google Scholar
  9. AlOthman ZA, Alam MM, Naushad M (2013) Heavy toxic metal ion exchange kinetics: validation of ion exchange process on composite cation exchanger nylon 6, 6 Zr (IV) phosphate. J Ind Eng Chem 19:956–960Google Scholar
  10. Alpaslan B, Yukselen MA (2002) Remediation of lead contaminated soils by. Water Air Soil Pollut 133:253–263Google Scholar
  11. Alqadami AA, Naushad M, Abdalla MA et al (2017a) Efficient removal of toxic metal ions from wastewater using a recyclable nanocomposite: a study of adsorption parameters and interaction mechanism. J Clean Prod 156:426–436Google Scholar
  12. Alqadami AA, Naushad M, Alothman ZA, Ghfar AA, Abdalla MA et al (2017b) Novel metal–organic framework (MOF) based composite material for the sequestration of U (VI) and Th(IV) metal ions from aqueous environment. ACS Appl Mater Interfaces 9:36026–36037Google Scholar
  13. Altinozlu H, Karagoz A, Polat T, Unver I (2012) Nickel hyperaccumulation by natural plants in Turkish serpentine soils. Turk J Bot 36:269–280.  https://doi.org/10.3906/bot-1101-10 Google Scholar
  14. Alvarenga P, Gonçalves AP, Fernandes RM et al (2008) Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Sci Total Environ 406:43–56.  https://doi.org/10.1016/j.scitotenv.2008.07.061 Google Scholar
  15. Anawar HM, Garcia-Sanchez A, Alam MTK, Rahman MM (2008) Phytofiltration of water polluted with arsenic and heavy metals. Int J Environ Pollut 33:292–312.  https://doi.org/10.1504/IJEP.2008.0194 Google Scholar
  16. Arora A, Saxena S, Sharma DK (2006) Tolerance and phytoaccumulation of chromium by three Azolla species. World J Microbiol Biotechnol 22:97–100.  https://doi.org/10.1007/s11274-005-9000-9 Google Scholar
  17. Arthur E, Crews H, Morgan C (2000) Optimizing plant genetic strategies for minimizing environmental contamination in the food chain: report on the MAFF funded joint JIC/CSL workshop held at the John Innes Centre, October 21–23, 1998. Int J Phytoremediat 2:1–21Google Scholar
  18. Arthur EL, Rice PJ, Rice PJ et al (2005) Phytoremediation—an overview. CRC Crit Rev Plant Sci 24:109–122Google Scholar
  19. Ashraf M, Ahmad MSA, Ozturk M (2010) Plant adaptation and phytoremediation. Springer, BerlinGoogle Scholar
  20. Awual MR, Hasan MM, Eldesoky GE et al (2016) Facile mercury detection and removal from aqueous media involving ligand impregnated conjugate nanomaterials. Chem Eng J 290:243–251Google Scholar
  21. Ayoub K, van Hullebusch ED, Cassir M, Bermond A (2010) Application of advanced oxidation processes for TNT removal: a review. J Hazard Mater 178:10–28.  https://doi.org/10.1016/j.jhazmat.2010.02.042 Google Scholar
  22. Bagga DK, Peterson S (2001) Phytoremediation of arsenic-contaminated soil as affected by the chelating agent CDTA and different levels of soil pH. Remediation 12:77–85.  https://doi.org/10.1002/rem.1027 Google Scholar
  23. Baghour M, Moreno DA, Hernández J et al (2001) Influence of root temperature on phytoaccumulation of As, Ag, Cr, and Sb in potato plants (Solanum Tuberosum L. var. Spunta). J Environ Sci Heal Part A Toxic Hazard Subst Environ Eng 36:1389–1401.  https://doi.org/10.1081/ESE-100104886 Google Scholar
  24. Bakar A, Farid A, Yusoff I, Fatt NT, Othman F, Ashraf MA (2013) Arsenic, zinc, and aluminium removal from gold mine wastewater effluents and accumulation by submerged aquatic plants (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata). BioMed Res Int 2013:1–7Google Scholar
  25. Bandara T, Herath I, Kumarathilaka P et al (2015) Role of fungal-bacterial co-inoculation and woody biochar on soil enzyme activity and heavy metal immobilization in serpentine soil. J Soils Sediments 17:665–673Google Scholar
  26. Bani A, Pavlova D, Echevarria G et al (2010) Nickel hyperaccumulation by the species of Alyssum and Thlaspi (Brassicaceae) from the ultramafic soils of the Balkans. Bot Serbica 34:3–14Google Scholar
  27. Bañuelos GS, Ajwa HA, Mackey B et al (1997) Evaluation of different plant species used for phytoremediation of high soil selenium. J Environ Qual 26:639.  https://doi.org/10.2134/jeq1997.00472425002600030008x Google Scholar
  28. Bañuelos GS, Arroyo I, Pickering IJ et al (2015) Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem 166:603–608Google Scholar
  29. Barznji DAM (2014) Role of aquatic plants in improving water quality. UJPBS 2:12–16Google Scholar
  30. Bauddh K, Singh RP (2012) Cadmium tolerance and its phytoremediation by two oil yielding plants Ricinus communis (L.) and Brassica juncea (L.) from the contaminated soil. Int J Phytoremediation 14:772–785.  https://doi.org/10.1080/15226514.2011.619238 Google Scholar
  31. Bennicelli R, Stȩpniewska Z, Banach A et al (2004) The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere 55:141–146.  https://doi.org/10.1016/j.chemosphere.2003.11.015 Google Scholar
  32. Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96:1049–1055Google Scholar
  33. Bernard S, Enayati A, Redwood L et al (2001) Autism: a novel form of mercury poisoning. [Review] [181 refs]. Med Hypotheses 56:462–471Google Scholar
  34. Berti WR, Cunningham SD (2000) Phytostabilization of metals. In: Phytoremediation toxic met using plants to clean up environ. pp 71–88Google Scholar
  35. Bhadra R, Spanggord RJ, Wayment DG et al (1999) Characterization of oxidation products of TNT metabolism in aquatic phytoremediation systems of Myriophyllum aquaticum. Environ Sci Technol 33:3354–3361.  https://doi.org/10.1021/es990436i Google Scholar
  36. Bianchi V, Toso RD, Debetto P et al (1980) Mechanisms of chromium toxicity in mammalian cell cultures. Toxicology 17:219–224.  https://doi.org/10.1016/0300-483X(80)90097-9 Google Scholar
  37. Bidar G, Garçon G, Pruvot C et al (2006) Behavior of Lolium perenne and Trifolium repens growing in a heavy metal contaminated field: Cd, Pb, Zn—Uptake and toxicity. Difpolmine Conf 147:546–553Google Scholar
  38. Bolan NS, Adriano DC, Naidu R (2003) Role of phosphorus in (Im)mobilization and bioavailability of heavy metals in the soil-plant system. In: Reviews of environmental contamination and toxicology. Springer, pp 1–44Google Scholar
  39. Boonyapookana B, Upatham ES, Kruatrachue M et al (2002) Phytoaccumulation and phytotoxicity of cadmium and chromium in duckweed Wolffia globosa. Int J Phytoremediat 4:87–100.  https://doi.org/10.1080/15226510208500075 Google Scholar
  40. Boonyapookana B, Parkpian P, Techapinyawat S et al (2005) Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabacum), and vetiver (Vetiveria zizanioides). J Environ Sci Heal Part A Toxic Hazard Subst Environ Eng 40:117–137.  https://doi.org/10.1081/ESE-200033621 Google Scholar
  41. Brunner I, Luster J, Günthardt-Goerg MS, Frey B (2008) Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ Pollut 152:559–568.  https://doi.org/10.1016/j.envpol.2007.07.006 Google Scholar
  42. Burken JG, Shanks JV, Thompson PL (2000) Phytoremediation and plant metabolism of explosives and nitroaromatic compounds. In: Spain JC, Hughes JB, Knackmuss HJ (eds) Biodegradation of nitroaromatic compounds and explosives. Lewis, Washington, D.C., pp 239–248Google Scholar
  43. Bushra R, Naushad M, Sharma G et al (2017) Synthesis of polyaniline based composite material and its analytical applications for the removal of highly toxic Hg2+ metal ion: antibacterial activity against E. coli. Korean J Chem Eng 34:1970–1979Google Scholar
  44. Chaney RL, Malik M, Li YM et al (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284.  https://doi.org/10.1016/S0958-1669(97)80004-3 Google Scholar
  45. Chehregani A, Malayeri BE (2007) Removal of heavy metals by native accumulator plants. Int J Agric Biol 9:462–465Google Scholar
  46. Chen Q, Wong JWC (2006) Growth of Agropyron elongatum in a simulated nickel contaminated soil with lime stabilization. Sci Total Environ 366:448–455.  https://doi.org/10.1016/j.scitotenv.2005.01.022 Google Scholar
  47. Chen L, Han Y, Jiang H, Korpelainen H, Li C (2011) Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis. J Exp Bot 62(14):5037–5050Google Scholar
  48. Chen GC, Liu Z, Zhang J, Owens G (2012) Phytoaccumulation of copper in willow seedlings under different hydrological regimes. Ecol Eng 44:285–289.  https://doi.org/10.1016/j.ecoleng.2012.04.018 Google Scholar
  49. Chen G, Liu X, Brookes PC, Xu J (2015) Opportunities for phytoremediation and bioindication of arsenic contaminated water using a submerged aquatic plant: Vallisneria natans (lour.) Hara. Int J Phytoremediat 17:249–255.  https://doi.org/10.1080/15226514.2014.883496 Google Scholar
  50. Chinmayee MD, Mahesh B, Pradesh S et al (2012) The assessment of phytoremediation potential of invasive weed Amaranthus spinosus L. Appl Biochem Biotechnol 167:1550–1559.  https://doi.org/10.1007/s12010-012-9657-0 Google Scholar
  51. Cofield N, Banks MK, Schwab AP (2007) Evaluation of hydrophobicity in PAH-contaminated soils during phytoremediation. Environ Pollut 145:60–67.  https://doi.org/10.1016/j.envpol.2006.03.040 Google Scholar
  52. Conesa HM, Faz Á, Arnaldos R (2007) Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District (SE Spain). Chemosphere 66:38–44.  https://doi.org/10.1016/j.chemosphere.2006.05.041 Google Scholar
  53. Conner AJ, Glare TR, Nap J-P (2003) The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment. Plant J 33:19–46.  https://doi.org/10.1046/j.0960-7412.2002.001607.x Google Scholar
  54. Cornish JE, Goldberg WC, Levine RS, Benemann JR (1995) Phytoremediation of soils contaminated with toxic elements and radionuclides. Battelle Press, ColumbusGoogle Scholar
  55. Cui B, Zhang X, Han G, Li K (2016) Antioxidant Defense response and growth reaction of Amorpha fruticosa seedlings in petroleum-contaminated soil. Water Air Soil Pollut 227:121.  https://doi.org/10.1007/s11270-016-2821-3 Google Scholar
  56. Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719.  https://doi.org/10.1104/pp.110.3.715 Google Scholar
  57. Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397Google Scholar
  58. Cunningham SD, Shann JR, Crowley DE, Anderson TA (1997) Phytoremediation of contaminated water and soil. ACS Publications, Washington, pp 2–17Google Scholar
  59. Curley A, Sedlak VA, Girling ED et al (1971) Organic mercury identified as the cause of poisoning in humans and hogs. Science 172:65–67Google Scholar
  60. Daneshvar E, Vazirzadeh A, Niazi A et al (2017) Desorption of methylene blue dye from brown macroalga: effects of operating parameters, isotherm study and kinetic modeling. J Clean Prod 152:443–453Google Scholar
  61. Das S, Goswami S, Das Talukdar A (2013) Copper hyperaccumulating plants from Barak Valley, South Assam, India for phytoremediation. Int J Toxicol Pharmacol Res 5:30–32Google Scholar
  62. Dec J, Bollag J-M (1994) Use of plant material for the decontamination of water polluted with phenols. Biotechnol Bioeng 44:1132–1139.  https://doi.org/10.1002/bit.260440915 Google Scholar
  63. Dekock PC (1956) Heavy metal toxicity and iron chlorosis. Ann Bot 20:133–141Google Scholar
  64. Deng H, Ye ZH, Wong MH (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut 132:29–40.  https://doi.org/10.1016/j.envpol.2004.03.030 Google Scholar
  65. Dietz AC, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109:163Google Scholar
  66. Dietz K-J, Baier M, Kramer V (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Heavy metal stress in plants. Springer, pp 73–97Google Scholar
  67. Dinesh M, Kumar MV, Neeraj P, Shiv B (2014) Phytoaccumulation of heavy metals in contaminated soil using Makoy (Solenum nigrum L.) and Spinach (Spinacia oleracea L.) plant. Sciences (New York) 2:350–354Google Scholar
  68. Domínguez MT, Madrid F, Marañón T, Murillo JM (2009) Cadmium availability in soil and retention in oak roots: potential for phytostabilization. Chemosphere 76:480–486.  https://doi.org/10.1016/j.chemosphere.2009.03.026 Google Scholar
  69. Dongmei L, Changqun D, (2008) Restoration potential of pioneer plants growing on lead-zinc mine tailings in Lanping, southwest China. J Environ Sci 20(10):1202–1209Google Scholar
  70. Dupont RR (1993) Fundamentals of bioventing applied to fuel contaminated sites. Environ Prog 12:45–53.  https://doi.org/10.1002/ep.670120109 Google Scholar
  71. Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114.  https://doi.org/10.1016/j.biotechadv.2004.10.001 Google Scholar
  72. Ehsan M, Santamaría-Delgado K, Vásquez-Alarcón A et al (2009) Phytostabilization of cadmium contaminated soils by Lupinus uncinatus Schldl. Span J Agric Res 7:390–397Google Scholar
  73. Escalante-Espinosa E, Gallegos-Martínez ME, Favela-Torres E, Gutiérrez-Rojas M (2005) Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere 59:405–413.  https://doi.org/10.1016/j.chemosphere.2004.10.034 Google Scholar
  74. Etim EE (2012) Phytoremediation and its mechanisms: a review. Int J Environ Bioenergy 2:120–136Google Scholar
  75. Ferro A, Gefell M, Kjelgren R, et al (2003) Maintaining hydraulic control using deep rooted tree systems. In: Advances in biochemical engineering/biotechnology. Springer, pp 125–156Google Scholar
  76. Flora SJS, Behari JR, Ashquin M, Tandon SK (1982) Time-dependent protective effect of selenium against cadmium-induced nephrotoxicity and hepatotoxicity. Chem Biol Interact 42:345–351Google Scholar
  77. Flora SJS, Mittal M, Mehta A (2008) Heavy metal induced oxidative stress and its possible reversal by chelation therapy. Indian J Med Res 128:501–523Google Scholar
  78. Flora SJS, Pachauri V, Saxena G, Academic Press (2011) Arsenic, cadmium lead. Reprod Dev Toxicol pp 415–438Google Scholar
  79. Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5(2):47–58Google Scholar
  80. Frank U, Barkley N (1995) Remediation of low permeability subsurface formations by fracturing enhancement of soil vapor extraction. J Hazard Mater 40:191–201.  https://doi.org/10.1016/0304-3894(94)00069-S Google Scholar
  81. Garbisu C, Hernández-Allica J, Barrutia O et al (2002) Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Rev Environ Health 17:173–188.  https://doi.org/10.1515/REVEH.2002.17.3.173 Google Scholar
  82. García-Salgado S, García-Casillas D, Quijano-Nieto MA, Bonilla-Simón MM (2012) Arsenic and heavy metal uptake and accumulation in native plant species from soils polluted by mining activities. Water Air Soil Pollut 223:559–572.  https://doi.org/10.1007/s11270-011-0882-x Google Scholar
  83. Garty J (2001) Biomonitoring atmospheric heavy metals with lichens: theory and application. CRC Crit Rev Plant Sci 20:309–371.  https://doi.org/10.1080/20013591099254 Google Scholar
  84. Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Env 6:18Google Scholar
  85. Gisbert C, Ros R, De Haro A et al (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445.  https://doi.org/10.1016/S0006-291X(03)00349-8 Google Scholar
  86. Gordon M, Burken J, Newman L (2003) Letter: clarifying phytoremediation data. Environ Sci Technol 37:310A–310AGoogle Scholar
  87. Gorinova N, Nedkovska M, Todorovska E et al (2007) Improved phytoaccumulation of cadmium by genetically modified tobacco plants (Nicotiana tabacum L.). Physiological and biochemical response of the transformants to cadmium toxicity. Environ Pollut 145:161–170.  https://doi.org/10.1016/j.envpol.2006.03.025 Google Scholar
  88. Greipsson S (2011) Phytoremediation. Nat Educ Knowl 3:7Google Scholar
  89. Guangde L, Zhongwen Z, Pei J, Nannan Z, Li L, Yufei Y, Miao Y (2009) Leaching remediation of heavy metal contaminated fluvio-aquatic soil with tea-saponin. Trans Chinese Soc Agri Eng 10:1–2Google Scholar
  90. Hajabbasi MA, Soleimani M (2009) Bioaccumulation of nickel and lead by bermuda grass (Cynodon dactylon) and tall fescue (Festuca arundinacea) from two contaminated soils. Casp J Environ Sci 7:59–70Google Scholar
  91. Harguinteguy CA, Schreiber R, Pignata ML (2013) Myriophyllum aquaticum as a biomonitor of water heavy metal input related to agricultural activities in the Xanaes River (Córdoba, Argentina). Ecol Indic 27:8–16.  https://doi.org/10.1016/j.ecolind.2012.11.018 Google Scholar
  92. Harvey PJ, Campanella BF, Castro PM, Harms H, Lichtfouse E, Schäffner AR, Smrcek S, Werck-Reichhart D (2002) Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environ Sci Pollut Res 9:29–47.  https://doi.org/10.1007/BF02987315 Google Scholar
  93. Heaton ACP, Rugh CL, Wang N, Meagher RB (1998) Phytoremediation of mercury- and methylmercury-polluted soils using genetically engineered plants. J Soil Contam 7:497–509.  https://doi.org/10.1080/10588339891334384 Google Scholar
  94. Heinaru E, Merimaa M, Viggor S, Lehiste M, Leito I, Truu J, Heinaru A (2005) Biodegradation eciency of functionally important populations selected for bioaugmentation in phenol-and oil-polluted area. FEMS Microbiol Ecol 51:363–373Google Scholar
  95. Hetland MD, Gallagher JR, Daly DJ, et al (2001) Processing of plants used to phytoremediate lead-contaminated sites. In: Sixth international in situ and on site bioremediation symposium. pp 129–136Google Scholar
  96. Hirsh SR, Compton HR, Matey DH, et al (2003) Five-year pilot study: Aberdeen proving ground, Maryland. Phytoremediat Transform Control Contam 2003:635–659Google Scholar
  97. Ho YN, Hsieh JL, Huang CC (2013) Construction of a plant-microbe phytoremediation system: combination of vetiver grass with a functional endophytic bacterium, achromobacter xylosoxidans F3B, for aromatic pollutants removal. Bioresour Technol 145:43–47.  https://doi.org/10.1016/j.biortech.2013.02.051 Google Scholar
  98. Hossner LR, Loeppert RH, Newton RJ, Szaniszlo PJ (1998) Literature review: phytoaccumulation of chromium, uranium, and plutonium in plant systems. Amarillo National Resource Center for Plutonium, AmarilloGoogle Scholar
  99. Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84.  https://doi.org/10.1111/j.1469-8137.1996.tb01147.x Google Scholar
  100. Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:339–364.  https://doi.org/10.1007/s12229-009-9036-x Google Scholar
  101. Jafari N, Ahmady-Asbchin S (2011) ecotoxicological effect of nickel on phytoaccumulation by Spirogyra irregularis Nageli (Chlorophyta). Int J Algae 13:392–404.  https://doi.org/10.1615/InterJAlgae.v13.i4.70 Google Scholar
  102. Jaishankar M, Tseten T, Anbalagan N et al (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72.  https://doi.org/10.2478/intox Google Scholar
  103. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182Google Scholar
  104. Jin X-F, Liu D, Islam E et al (2009) Effects of zinc on root morphology and antioxidant adaptations of cadmium-treated Sedum alfredii H. J Plant Nutr 32:1642–1656Google Scholar
  105. Jomjun N, Siripen T, Maliwan S et al (2010) Phytoremediation of arsenic in submerged soil by wetland plants. Int J Phytoremediat 13:35–46Google Scholar
  106. Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valkoc M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107Google Scholar
  107. Journois D, Pouard P, Greeley WJ et al (1994) Hemofiltration during cardiopulmonary bypass in pediatric cardiac surgery. Anesthesiology 81:1181–1189Google Scholar
  108. Kaimi E, Mukaidani T, Tamaki M (2007) Screening of twelve plant species for phytoremediation of petroleum hydrocarbon-contaminated soil. Plant Prod Sci 10:211–218.  https://doi.org/10.1626/pps.10.211 Google Scholar
  109. Kalve S, Sarangi BK, Pandey RA, Chakrabarti T (2011) Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata—prospective for phytoextraction from contaminated water and soil. Curr Sci 100:888–894Google Scholar
  110. Kamal M, Ghaly AE, Mahmoud N, CoteCôté R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29:1029–1039.  https://doi.org/10.1016/S0160-4120(03)00091-6 Google Scholar
  111. Kamnev AA, van der Lelie D (2000) Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Biosci Rep 20:239–258Google Scholar
  112. Kärenlampi S, Schat H, Vangronsveld J et al (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ Pollut 107:225–231.  https://doi.org/10.1016/S0269-7491(99)00141-4 Google Scholar
  113. Karthik V, Saravanan K, Sivarajasekar N, Suriyanarayanan N (2016a) Utilization of biomass from Trichoderma harzianum for the adsorption of reactive red dye. Ecol Environ Conserv 22:S435–S440Google Scholar
  114. Karthik V, Saravanan K, Sivarajasekar N, Suriyanarayanan N (2016b) Bioremediation of dye bearing effluents using microbial biomass. Ecol Environ Conserv 22:S423–S434Google Scholar
  115. Kasiuliene A, Paulauskas V (2013) In-situ phytoremediation: a review of natural and chemically assisted phytoextraction. In: Research for rural development. Latvia University of Agriculture, pp 107–113Google Scholar
  116. Kennen K, Kirkwood N (2015) Phyto: principles and resources for site remediation and landscape design. Routledge, LondonGoogle Scholar
  117. Khandare RV, Govindwar SP (2015) Phytoremediation of textile dyes and effluents: current scenario and future prospects. Biotechnol Adv 33:1697–1714.  https://doi.org/10.1016/j.biotechadv.2015.09.003 Google Scholar
  118. Khellaf N, Zerdaoui M (2009) Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L. Bioresour. Technol. 100: 6137–6140Google Scholar
  119. King DJ, Doronila AI, Feenstra C et al (2008) Phytostabilisation of arsenical gold mine tailings using four Eucalyptus species: growth, arsenic uptake and availability after five years. Sci Total Environ 406:35–42.  https://doi.org/10.1016/j.scitotenv.2008.07.054 Google Scholar
  120. Krämer U, Chardonnens AN (2001) The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl Microbiol Biotechnol 55:661–672.  https://doi.org/10.1007/s002530100631 Google Scholar
  121. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation : a beneficial plant-microbe interaction bioremediation: a natural method. Mol Plant Microb Interact 17:6–15Google Scholar
  122. Kumar A, Sharma G, Naushad M et al (2017) Facile hetero-assembly of superparamagnetic Fe3O4/BiVO4 stacked on biochar for solar photo-degradation of methyl paraben and pesticide removal from soil. J Photochem Photobiol A Chem 337:118–131Google Scholar
  123. Lampert PW, Schochet SS Jr (1968) Demyelination and remyelination in lead neuropathy: electron microscopic studies. J Neuropathol Exp Neurol 27:527–545Google Scholar
  124. Landmeyer JE (2011) Introduction to phytoremediation of contaminated groundwater: historical foundation, hydrologic control, and contaminant remediation. Springer, BerlinGoogle Scholar
  125. LeDuc DL, Terry N (2005) Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol 32:514–520.  https://doi.org/10.1007/s10295-005-0227-0 Google Scholar
  126. Lesnefsky EJ (1994) Tissue iron overload and mechanisms of iron-catalyzed oxidative injury. In: Free radicals in diagnostic medicine. Springer, pp 129–146Google Scholar
  127. Lichtfouse E, Eglinton T (1995) 13C and 14C evidence of pollution of a soil by fossil fuel and reconstruction of the composition of the pollutant. Org Geochem 23:969–973.  https://doi.org/10.1016/0146-6380(95)00082-8 Google Scholar
  128. Lili L, Hui S (2007) Advance of research on phytoremediation of petroleum-polluted soil. Environ Prot Chem Ind 3:11Google Scholar
  129. Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper1. Soil Sci Soc Am J 42:421.  https://doi.org/10.2136/sssaj1978.03615995004200030009x Google Scholar
  130. Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy metal-contaminated soils. J Environ Qual 30:1919.  https://doi.org/10.2134/jeq2001.1919 Google Scholar
  131. Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258.  https://doi.org/10.1016/j.biotechadv.2010.12.001 Google Scholar
  132. Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228.  https://doi.org/10.1016/j.chemosphere.2007.04.017 Google Scholar
  133. Mains D, Craw D, Rufaut C, Smith C (2006a) Phytostabilization of gold mine tailings, New Zealand. Part 1: plant establishment in alkaline saline substrate. Int J Phytoremediat 8:131–147.  https://doi.org/10.1080/15226510600678472 Google Scholar
  134. Mains D, Craw D, Rufaut C, Smith C (2006b) Phytostabilization of gold mine tailings from New Zealand. Part 2: experimental evaluation of arsenic mobilization during revegetation. Int J Phytoremediat 8:163–183.  https://doi.org/10.1080/15226510600742559 Google Scholar
  135. Mancuso TF (1997) Chromium as an industrial carcinogen: part II. Chromium in human tissues. Am J Ind Med 31:140–147.  https://doi.org/10.1002/(SICI)1097-0274(19970204)31:2<140:AID-AJIM2>3.0.CO;2-3 Google Scholar
  136. Marbaniang D, Chaturvedi SS (1994) Phytoaccumulation of zinc by Scirpus mucronatus (L.) Palla ex Kerner. Keanean J Sci 1:69–75Google Scholar
  137. Marmiroli N, McCutcheon SC (2004) Making phytoremediation a successful technology. Phytoremediation 1:85–119.  https://doi.org/10.1002/047127304X.ch3 Google Scholar
  138. Mejáre M, Bülow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73.  https://doi.org/10.1016/S0167-7799(00)01534-1 Google Scholar
  139. Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116:278–283.  https://doi.org/10.1289/ehp.10608 Google Scholar
  140. Merkl N, Schultze-Kraft R, Infante C (2005) Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water Air Soil Pollut 165:195–209.  https://doi.org/10.1007/s11270-005-4979-y Google Scholar
  141. Mirza N, Pervez A, Mahmood Q et al (2011) Ecological restoration of arsenic contaminated soil by Arundo donax L. Ecol Eng 37:1949–1956.  https://doi.org/10.1016/j.ecoleng.2011.07.006 Google Scholar
  142. Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor Appl Genet 78:161–168Google Scholar
  143. Mittal A, Naushad M, Sharma G et al (2016) Fabrication of MWCNTs/ThO2 nanocomposite and its adsorption behavior for the removal of Pb(II) metal from aqueous medium. Desalin Water Treat 57:21863–21869Google Scholar
  144. Mizukoshi K, Nagaba M, Ohno Y et al (1975) Neurotological studies upon intoxication by organic mercury compounds. Orl 37:74–87.  https://doi.org/10.1159/000275209 Google Scholar
  145. Mokhtar H, Morad N, Fizri FFA (2011) Phytoaccumulation of copper from aqueous solutions using Eichhornia crassipes and Centella asiatica. Int J Environ Sci Dev 2:205–210.  https://doi.org/10.7763/IJESD.2011.V2.125 Google Scholar
  146. Moreno FN, Anderson CWN, Stewart RB, et al (2004a) mercury phytoextraction and phytovolatilisation from hg-contaminated artisanal mine sites. Phytoremediat Mercur Mine Wastes 147–159Google Scholar
  147. Moreno FN, Anderson CWN, Stewart RB, Robinson BH (2004b) Phytoremediation of mercury-contaminated mine tailings by induced plant-mercury accumulation. Environ Pract 6:165–175.  https://doi.org/10.1017/S1466046604000274 Google Scholar
  148. Mudgal V, Madaan N, Mudgal A et al (2010) Effect of toxic metals on human health ~ !2009-12-12 ~ !2010-02-09 ~ !2010-04-06 ~ ! Open Nutraceuticals J 3:94–99.  https://doi.org/10.2174/1876396001003010094 Google Scholar
  149. Mukherjee A, Bandyopadhyay A, Dutta S, Basu S (2013) Phytoaccumulation of iron by callus tissue of Clerodendrum indicum (L). Chem Ecol 29:564–571.  https://doi.org/10.1080/02757540.2013.779681 Google Scholar
  150. Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207.  https://doi.org/10.1016/S0013-7952(00)00101-0 Google Scholar
  151. Munshower FF, Neuman DR, Jennings SR (2003) phytostabilization permanence within Montana’ S Clark Fork River Basin superfund sites 1. Society 817–847.  https://doi.org/10.21000/jasmr03010817
  152. Nabi SA, Naushad M, Bushra R (2000) Synthesis and characterization of a new organic-inorganic Pb2+ selective nano-composite cation exchanger acrylonitrile stannic(IV) tungstate and its analytical applications. Chem Eng J 152:80–87Google Scholar
  153. Nabi SA, Bushra R, Naushad M, Khan AM (2010) Synthesis, characterization and ion exchange behavior of composite material, poly-o-toluidine stannic molybdate and its use in the separation of toxic metal ions. Chem Eng J 165:529–536Google Scholar
  154. Nabila K, Mostefa Z (2009) Phytoaccumulation of zinc by the duckweed Lemna gibba. Bioresour Technol 100:23000Google Scholar
  155. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216Google Scholar
  156. Naushad M, ALOthman ZA (2015) Separation of toxic Pb2+ metal from aqueous solution using strongly acidic cation-exchange resin: analytical applications for the removal of metal ions from pharmaceutical formulation. Desalin Water Treat 53:2158–2166Google Scholar
  157. Naushad M, Al-Othman ZA, Islam M (2013) Adsorption of cadmium ion using a new composite cation-exchanger polyaniline Sn (IV) silicate: kinetics, thermodynamic and isotherm studies. Int J Environ Sci Technol 10:567–578Google Scholar
  158. Naushad M, ALOthman ZA, Awual MR et al (2015a) Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb2+ and Hg2+ metal ions from aqueous medium using Ti(IV) iodovanadate cation exchanger. Ionics (Kiel) 21:2237–2245Google Scholar
  159. Naushad M, ALOthman ZA, Javadian H (2015b) Removal of Pb(II) from aqueous solution using ethylene diamine tetra acetic acid-Zr (IV) iodate composite cation exchanger: kinetics, isotherms and thermodynamic studies. J Ind Eng Chem 25:35–41Google Scholar
  160. Naushad M, Mittal A, Rathore M, Gupta V (2015c) Ion-exchange kinetic studies for Cd(II), Co(II), Cu(II), and Pb(II) metal ions over a composite cation exchanger. Des Water Treat. 54:2883–2890Google Scholar
  161. Naushad M, ALOthman ZA, Awual MR et al (2016a) Adsorption of rose Bengal dye from aqueous solution by amberlite Ira-938 resin: kinetics, isotherms, and thermodynamic studies. Desalin Water Treat 57:13527–13533Google Scholar
  162. Naushad M, Vasudevan S, Sharma G et al (2016b) Adsorption kinetics, isotherms, and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin. Desalin Water Treat 57:18551–18559Google Scholar
  163. Naushad M, Ahamad T, Al-Maswari BM et al (2017) Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium. Chem Eng J 330:1351–1360Google Scholar
  164. Naushad M, Sharma G, Kumar A et al (2018) Efficient removal of toxic phosphate anions from aqueous environment using pectin based quaternary amino anion exchanger. Int J Biol Macromol 106:1–10Google Scholar
  165. Negri MC, Gatliff EG, Quinn JJ, Hinchman RR (2004) Root development and rooting at depths. Phytoremediation 1:233–262.  https://doi.org/10.1002/047127304X.ch7 Google Scholar
  166. Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230.  https://doi.org/10.1016/j.copbio.2004.04.006 Google Scholar
  167. Newman LA, Strand SE, Choe N et al (1997) Uptake and biotransformation of trichloroethylene by hybrid poplars. Environ Sci Technol 31:1062–1067.  https://doi.org/10.1021/es960564w Google Scholar
  168. Nwoko CO (2010) Trends in phytoremediation of toxic elemental and organic pollutants. Afr J Biotechnol 9:6010–6016.  https://doi.org/10.5897/AJB09.061 Google Scholar
  169. Nyer EK, Gatliff EG (1996) Phytoremediation. Groundw Monit Remediat 16:58–62Google Scholar
  170. Oh K, Cao T, Li T, Cheng H (2014) Study on application of phytoremediation technology in management and remediation of contaminated soils. J Clean Energy Technol 2:216–220.  https://doi.org/10.7763/JOCET.2014.V2.126 Google Scholar
  171. Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126.  https://doi.org/10.1007/s11270-007-9401-5 Google Scholar
  172. Pan A, Yang M, Tie F et al (1994) Expression of mouse metallothionein-I gene confers cadmium resistance in transgenic tobacco plants. Plant Mol Biol 24:341–351Google Scholar
  173. Parmar S, Singh V (2015) Phytoremediation approaches for heavy metal pollution: a review. J Plant Sci Res 2:1–8Google Scholar
  174. Pastor J, GutiÉrrez-ginÉs MJ, HernÁndez AJ (2015) Heavy-metal phytostabilizing potential of Agrostis castellana Boiss. and reuter. Int J Phytoremediat 17:988–998.  https://doi.org/10.1080/15226514.2014.1003786 Google Scholar
  175. Pathania D, Sharma G, Naushad M, Kumar A (2014) Synthesis and characterization of a new nanocomposite cation exchanger polyacrylamide Ce(IV) silicophosphate: photocatalytic and antimicrobial applications. J Ind Eng Chem 20:3596–3603Google Scholar
  176. Paz-Alberto AM, Sigua GC (2013) Phytoremediation: a green technology to remove environmental pollutants. Am J Clim Change 2:71–86.  https://doi.org/10.4236/ajcc.2013.21008 Google Scholar
  177. Petrick JS, Ayala-Fierro F, Cullen WR et al (2000) Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human hepatocytes. Toxicol Appl Pharmacol 163:203–207.  https://doi.org/10.1006/taap.1999.8872 Google Scholar
  178. Petrilli FL, De Flora S (1978) Metabolic deactivation of hexavalent chromium mutagenicity. Mutat Res Mutagen Relat Subj 54:139–147.  https://doi.org/10.1016/0165-1161(78)90034-1 Google Scholar
  179. Pillon-Smith EA, Pilon M (2000) Breeding mercury breathing plants for environmental clean-up. Trends Plants Sci 5:235–236Google Scholar
  180. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39Google Scholar
  181. Pilon-Smits EAH, de Souza MP, Hong G et al (1999) Selenium volatilization and accumulation by twenty aquatic plant species. J Environ Qual Madison 28:1011.  https://doi.org/10.2134/jeq1999.00472425002800030035x Google Scholar
  182. Prasad MNV, De Oliveira Freitas HM (2003) Metal hyperaccumulation in plants—Biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:110–146.  https://doi.org/10.2225/vol6-issue3-fulltext-6 Google Scholar
  183. Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540.  https://doi.org/10.1016/S0160-4120(02)00152-6 Google Scholar
  184. Pulsawat W, Leksawasdi N, Rogers PL, Foster LJR (2003) Anions effects on biosorption of Mn(II) by extracellular polymeric substance (EPS) from Rhizobium etli. Biotechnol Lett 25:1267–1270.  https://doi.org/10.1023/A:1025083116343 Google Scholar
  185. Purvis W (2000) Plant power against pollution. Nature 407:298–299.  https://doi.org/10.1038/35030247 Google Scholar
  186. Qian J-H, Zayed A, Zhu Y-L et al (1999) Phytoaccumulation of trace elements by wetlands plants: uptake and accumulation of ten trace elements by twelve plant species. J Environ Qual 5:1448–1455Google Scholar
  187. Radziemska M, Vaverková MD, Baryła A (2017) Phytostabilization-management strategy for stabilizing trace elements in contaminated soils. Int J Environ Res Public Health 14:958.  https://doi.org/10.3390/ijerph14090958 Google Scholar
  188. Rai PK (2008a) Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. Int J Phytoremediation 10:133–160.  https://doi.org/10.1080/15226510801913918 Google Scholar
  189. Rai PK (2008b) Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. Int J Phytoremediat 10:430–439.  https://doi.org/10.1080/15226510802100606 Google Scholar
  190. Raistrick A, Jennings B (1965) A history of lead mining in the Pennines. Longmans, pp 347–358Google Scholar
  191. Rajakaruna N, Tompkins KM, Pavicevic PG (2006) Phytoremediation: an affordable green technology for the clean-up of metal-contaminated sites in Sri Lanka. Cey J Sci (Bio Sci) 35:25–39Google Scholar
  192. Ramachandran P, Sundharam R, Palaniyappan J, Munusamy AP (2013) Potential process implicated in bioremediation of textile effluents: a review. Pelagia Res Libr Adv Appl Sci Res 4:131–145Google Scholar
  193. Rashed MN (2003) Fruit stones as adsorbents for the removal of lead ion from polluted water. Chem Dep Fac Sci 81528:72Google Scholar
  194. Rashid A, Ayub N, Ahmad T et al (2009) Phytoaccumulation prospects of cadmium and zinc by mycorrhizal plant species growing in industrially polluted soils. Environ Geochem Health 31:91–98.  https://doi.org/10.1007/s10653-008-9159-8 Google Scholar
  195. Rashid A, Mahmood T, Mehmood F et al (2014) Phytoaccumulation, competitive adsorption and evaluation of chelators-metal interaction in lettuce plant. Environ Eng Manag J 13:2583–2592Google Scholar
  196. Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226.  https://doi.org/10.1016/S0958-1669(97)80106-1 Google Scholar
  197. Recio-Vazquez L, Garcia-Guinea J, Carral P et al (2011) Arsenic mining waste in the catchment area of the Madrid detrital aquifer (Spain). Water Air Soil Pollut 214:307–320.  https://doi.org/10.1007/s11270-010-0425-x Google Scholar
  198. Redjala T, Zelko I, Sterckeman T et al (2011) Relationship between root structure and root cadmium uptake in maize. Environ Exp Bot 71:241–248.  https://doi.org/10.1016/j.envexpbot.2010.12.010 Google Scholar
  199. Regvar M, Vogel-Mikuš K, Kugonič N et al (2006) Vegetational and mycorrhizal successions at a metal polluted site: Indications for the direction of phytostabilisation? Environ Pollut 144:976–984.  https://doi.org/10.1016/j.envpol.2006.01.036 Google Scholar
  200. Rizzi L, Petruzzelli G, Poggio G, Guidi GV (2004) Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization. Chemosphere 57:1039–1046Google Scholar
  201. Rockwood DL, Naidu C V., Carter DR, et al (2004) Short-rotation woody crops and phytoremediation: Opportunities for agroforestry? In: Agroforestry systems. Springer, pp 51–63Google Scholar
  202. Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A. Appl Microbiol Biotechnol 63:239–248Google Scholar
  203. Roper JC, Dec J, Bollag JM (1996) Using minced horseradish roots for the treatment of polluted waters. J Environ Qual 25:1242–1247Google Scholar
  204. Rotkittikhun P, Chaiyarat R, Kruatrachue M et al (2007) Growth and lead accumulation by the grasses Vetiveria zizanioides and Thysanolaena maxima in lead-contaminated soil amended with pig manure and fertilizer: a glasshouse study. Chemosphere 66:45–53.  https://doi.org/10.1016/j.chemosphere.2006.05.038 Google Scholar
  205. Rouch DA, Lee BTO, Morby AP (1995) Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance. J Ind Microbiol 14:132–141.  https://doi.org/10.1007/BF01569895 Google Scholar
  206. Sakakibara M, Watanabe A, Inoue M, et al (2010) Phytoextraction and phytovolatilization of arsenic from As-contaminated soils by Pteris vittata. In: Proceedings of the annual international conference on soils, sediments, water and energy. p 26Google Scholar
  207. Sakakibara M, Ohmori Y, Ha NTH et al (2011) Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. Clean Soil, Air, Water 39:735–741.  https://doi.org/10.1002/clen.201000488 Google Scholar
  208. Salem S, Berends DHJG, Heijnen JJ, Van Loosdrecht MCM (2003) Bio-augmentation by nitrification with return sludge. Water Res 37:1794–1804.  https://doi.org/10.1016/S0043-1354(02)00550-X Google Scholar
  209. Salt DE, Baker AJM (2008) Phytoremediation of Metals. Biotechnol Second Complet Revis Ed 11–12:385–397.  https://doi.org/10.1002/9783527620999.ch17m Google Scholar
  210. Saraswat S, Rai JPN (2009) Chemistry and ecology phytoextraction potential of six plant species grown in multimetal contaminated soil Phytoextraction potential of six plant species grown in multimetal contaminated soil. Chem Ecol 25:1–11.  https://doi.org/10.1080/02757540802657185 Google Scholar
  211. Sas-Nowosielska A, Kucharski R, Małkowski E et al (2004) Phytoextraction crop disposal—an unsolved problem. Environ Pollut 128:373–379.  https://doi.org/10.1016/j.envpol.2003.09.012 Google Scholar
  212. Schnabel WE, White DM (2001) The effect of mycorrhizal fungi on the fate of aldrin: phytoremediation potential. Int J Phytoremediation 3:221–241.  https://doi.org/10.1080/15226510108500058 Google Scholar
  213. Schnoor JL (2000) Phytostabilization of metals using hybrid poplar trees. In: Phytoremediation toxic met—using plants to clean up environ. pp 133–150Google Scholar
  214. Shackira AM, Puthur JT (2017) Enhanced phytostabilization of cadmium by a halophyte—Acanthus ilicifolius L. Int J Phytoremediat 19:319–326.  https://doi.org/10.1080/15226514.2016.1225284 Google Scholar
  215. Shahandeh H, Hossner LR (2000) Plant screening for chromium phytoremediation. Int J Phytoremediation 2:31–51.  https://doi.org/10.1080/15226510008500029 Google Scholar
  216. Shahandeh H, Hossner LR (2002) Role of soil properties in phytoaccumulation of uranium. Water Air Soil Pollut 141:165–180.  https://doi.org/10.1023/A:1021346828490 Google Scholar
  217. Shahid M, Austruy A, Echevarria G et al (2014) EDTA-enhanced phytoremediation of heavy metals: a review. Soil Sediment Contam 23:389–416.  https://doi.org/10.1080/15320383.2014.831029 Google Scholar
  218. Sharma G, Pathania D, Naushad M (2014) Preparation, characterization and antimicrobial activity of biopolymer based nanocomposite ion exchanger pectin zirconium(IV) selenotungstophosphate: application for removal of toxic metals, G. Sharma, D. pathania, Mu. Naushad. J Ind Eng Chem 20:4482–4490Google Scholar
  219. Sharma G, Pathania D, Naushad M (2015) Preparation, characterization, and ion exchange behavior of nanocomposite polyaniline zirconium(IV) selenotungstophosphate for the separation of toxic metal ions. Ionics 21:1045–1055Google Scholar
  220. Singh Ajay WP (2004) No title: applied bioremediation and phytoremediation. Springer, BerlinGoogle Scholar
  221. Singh S, Sinha S (2005) Accumulation of metals and its effects in Brassica juncea (L.) Czern. (cv. Rohini) grown on various amendments of tannery waste. Ecotoxicol Environ Saf 62:118–127.  https://doi.org/10.1016/j.ecoenv.2004.12.026 Google Scholar
  222. Sinha S, Gupta M, Chandra P (1996) Bioaccumulation and biochemical effects of mercury in the plant Bacopa monnieri (L). Environ Toxicol Water Qual 11:105–112.  https://doi.org/10.1002/(SICI)1098-2256(1996)11:2<105:AID-TOX5>3.0.CO;2-D Google Scholar
  223. Sivarajasekar N (2007) Hevea brasiliensis—a biosorbent for the adsorption of Cu (II) from aqueous solutions. Carbon Lett 8:199–206Google Scholar
  224. Sivarajasekar N (2014) Biosorption of cationic dyes using waste cotton seeds. Doctoral dissertation, Ph. D Thesis. Anna University ChennaiGoogle Scholar
  225. Sivarajasekar N, Baskar R (2014a) Adsorption of basic red 9 on activated waste Gossypium hirsutum seeds: process modeling, analysis and optimization using statistical design. J Ind Eng Chem 20:2699–2709Google Scholar
  226. Sivarajasekar N, Baskar R (2014b) Adsorption of basic magenta II onto H2SO4 activated immature Gossypium hirsutum seeds: kinetics, isotherms, mass transfer, thermodynamics and process design. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2014.10.040 Google Scholar
  227. Sivarajasekar N, Baskar R (2014c) Adsorption of basic red 9 onto activated carbon derived from immature cotton seeds: isotherm studies and error analysis, desalination and water treatment, accepted manuscript. Desalin Water Treat. 52:7743–7765Google Scholar
  228. Sivarajasekar N, Baskar R (2015a) Biosorption of basic violet 10 onto activated Gossypium hirsutum seeds: batch and fixed-bed column studies. Chin J Chem Eng 23:1610–1619Google Scholar
  229. Sivarajasekar N, Baskar R (2015b) Agriculture waste biomass valorisation for cationic dyes sequestration: a concise review. J Chem Pharm Res 7:737–748Google Scholar
  230. Sivarajasekar N, Srileka S, Samson AP, Rabinson S (2008) Kinetic modeling for biosorption of methylene blue onto H3PO4 activated Acacia arabica. Carbon Lett 9:181–187Google Scholar
  231. Sivarajasekar N, Baskar R, Ragu T, Sarika K, Preethi N, Radhika T (2017a) Biosorption studies on waste cotton seed for cationic dyes sequestration: equilibrium and thermodynamics. Appl Water Sci 7:1987–1995Google Scholar
  232. Sivarajasekar N, Balasubramani K, Mohanraj N, Maran JP, Sivamani S (2017b) Fixed-bed adsorption of atrazine onto microwave irradiated Aegle marmelos Correa fruit shell: statistical optimization, process design and breakthrough modeling. J Mol Liq 241:823–830Google Scholar
  233. Sivarajasekar N, Mohanraj N, Sivamani S, Moorthy GI (2017c) Response surface methodology approach for optimization of lead (II) adsorptive removal by Spirogyra sp. biomass. J Environ Biotechnol Res 6:88–95Google Scholar
  234. Sivarajasekar N, Mohanraj N, Baskar R, Sivamani S (2017d) Fixed-bed adsorption of ranitidine hydrochloride onto microwave assisted—activated Aegle marmelos correa fruit shell: statistical optimization and breakthrough modelling. Arab J Sci Eng.  https://doi.org/10.1007/s13369-017-2565-4 Google Scholar
  235. Sivarajasekar N, Paramasivan T, Subashini R, Kandasamy S, Prakashmaran J (2017e) Central composite design optimization of fluoride removal by spirogyra biomass. Asian J Microbiol Biotechnol Environ Sci 19:S130–S137Google Scholar
  236. Sivarajasekar N, Mohanraj N, Balasubramani K, Prakash Maran J, Ganesh Moorthy I (2017f) Optimization, equilibrium and kinetic studies on ibuprofen removal onto microwave assisted—activated Aegle marmelos correa fruit shell. Desalin Water Treat 84:48–58Google Scholar
  237. Sivarajasekar N, Paramasivan T, Muthusaravanan S et al (2017g) Defluoridation of water using adsorbents-a concise review. J Environ Biotechnol Res 6:186–198Google Scholar
  238. Sivarajasekar N, Mohanraj N, Sivamani S, Prakash Maran J (2018a) Statistical optimization studies on adsorption of ibuprofen onto Albizialebbeck seed pods activated carbon prepared using microwave irradiation. Mater Today Proc 5:7264–7274Google Scholar
  239. Sivarajasekar N, Nainamalai Mohanraj, Sivamani S, Ganesh Moorthy I, Ram Kothandan, Muthusaravanan S (2018b) Comparative modeling of fluoride biosorption onto waste Gossypium hirsutum seed microwave-bichar using response surface methodology and artificial neural networks, IEEE Xplore. 1631–1635Google Scholar
  240. Snyder RD (1971) Congenital mercury poisoning. N Engl J Med 284:1014–1016Google Scholar
  241. Song LS, Wang SQ, Xiao RP, Spurgeon H, Lakatta EG, Cheng H (2001) β-Adrenergic stimulation synchronizes intracellular Ca2+ release during excitation-contraction coupling in cardiac myocytes. Circulat Res 88:794–801Google Scholar
  242. Soudek P, Petrová Š, Vaněk T (2012) Phytostabilization or accumulation of heavy metals by using of energy crop Sorghum sp. In: 3rd international conference on biology, environment and chemistry IPCBEE. IACSIT Press, SingaporeGoogle Scholar
  243. Stomp A-M, Han K-H, Wilbert S et al (1994) Genetic Strategies for enhancing phytoremediation. Ann N Y Acad Sci 721:481–491.  https://doi.org/10.1111/j.1749-6632.1994.tb47418.x Google Scholar
  244. Strand SE, Newman L, Ruszaj M (1995) Removal of trichloroethylene from aquifers using trees. Am Soc Civ Eng, New YorkGoogle Scholar
  245. Su Y, Han FX, Sridhar BBM, Monts DL (2005) Phytotoxicity and phytoaccumulation of trivalent and hexavalent chromium in brake fern. Environ Toxicol Chem 24:2019–2026.  https://doi.org/10.1897/04-329R.1 Google Scholar
  246. Subhasini V, Swamy AVVS (2014) Phytoremediation of cadmium and chromium contaminated soils by Cyperus Rotundus L. Am Int J Res Sci Technol Eng Math 6:97–101Google Scholar
  247. Susarla S, Bacchus ST, Harvey G, McCutcheon SC (2000) Phytotransformations of perchlorate contaminated waters. Environ Technol 21:1055–1065Google Scholar
  248. Tamburini E, Sergi S, Serreli L et al (2017) Bioaugmentation-assisted phytostabilisation of abandoned mine sites in south west Sardinia. Bull Environ Contam Toxicol 98:310–316.  https://doi.org/10.1007/s00128-016-1866-8 Google Scholar
  249. Tanaka T, Yamada K, Tonosaki T et al (2000) Enzymatic degradation of alkylphenols, bisphenol A, synthetic estrogen and phthalic ester. Water Sci Technol 42:89–95Google Scholar
  250. Tang YT, Qiu RL, Zeng XW et al (2009) Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environ Exp Bot 66:126–134.  https://doi.org/10.1016/j.envexpbot.2008.12.016 Google Scholar
  251. Tangahu BV, Sheikh Abdullah SR, Basri H et al (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng.  https://doi.org/10.1155/2011/939161 Google Scholar
  252. Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432.  https://doi.org/10.1146/annurev.arplant.51.1.401 Google Scholar
  253. Traina G, Morselli L, Adorno GP (2007) Electrokinetic remediation of bottom ash from municipal solid waste incinerator. Electrochim Acta 52:3380–3385Google Scholar
  254. Tripathi M, Munot HP, Shouche Y et al (2005) Isolation and functional characterization of siderophore-producing lead-and cadmium-resistant Pseudomonas putida KNP9. Curr Microbiol 50:233–237Google Scholar
  255. Turgut C, Katie Pepe M, Cutright TJ (2004) The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ Pollut 131:147–154.  https://doi.org/10.1016/j.envpol.2004.01.017 Google Scholar
  256. Tzvetkova C, Bozhkov O (2009) Study of rhenium phytoaccumulation in White Clover (Trifolium repens) and Water Fern (Salvinia natans L.). In: 7th WSEAS International Conference on Environment, Ecosystems and Development. pp 123–126Google Scholar
  257. Udoka OC, Ekanem EO, Harami MA, Tafawa A (2014) Phytoaccumulation potentials of Tamarindus indica Google Scholar
  258. Un Nisa W, Rashid A (2015) Potential of vetiver (Vetiveria Zizanioides L.) grass in removing selected pahs from diesel contaminated soil. Pak J Bot 47:291–296Google Scholar
  259. van der Heijden MGA (2003) Mycorrhizal ecology. Springer, Berlin, pp 243–265Google Scholar
  260. Varun M, Souza RD, Pratas J et al (2011) Evaluation of phytostabilization, a green technology to remove heavy metals from industrial sludge using Typha latifolia L. Experimental design. Biotechnol Bioinf Bioeng 1:137–145Google Scholar
  261. Vázquez S, Agha R, Granado A et al (2006) Use of white lupin plant for phytostabilization of Cd and as polluted acid soil. Water Air Soil Pollut 177:349–365.  https://doi.org/10.1007/s11270-006-9178-y Google Scholar
  262. Vidali M (2001) Bioremediation. an overview. Pure Appl Chem 73:1163–1172Google Scholar
  263. Vijayalakshmi V, Senthilkumar VP, Mophin-Kani K, Sivamani S, Sivarajasekar N, Vasantharaj S (2018) Bio-degradation of Bisphenol A by Pseudomonas aeruginosa PAb1 isolated from effluent of thermal paper industry: kinetic modeling and process optimization. J Radiat Res Appl Sci 11:56–65Google Scholar
  264. Vinegar HJ, Stegemeier GL (2000) Low cost, self regulating heater for use in an in situ thermal desorption soil remediation systemGoogle Scholar
  265. Wang Q, Kim D, Dionysiou DD et al (2004) Sources and remediation for mercury contamination in aquatic systems—a literature review. Environ Pollut (Amsterdam, Netherlands) 131:323–336Google Scholar
  266. Watt NR (2007) Testing Amendments for increasing soil availability of radionuclides. Phytoremediat Methods Rev 23:131–137Google Scholar
  267. Weatherley AH (1963) Thermal stress and interrenal tissue in the perch Perca fluviatilis (Linnaeus). J Zool 141:527–555Google Scholar
  268. Wei B, Yang L (2010) A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J 94:99–107.  https://doi.org/10.1016/j.microc.2009.09.014 Google Scholar
  269. Wenger K, Kayser A, Gupta SK, Furrer G, Schulin R (2002) Comparison of NTA and elemental sulfur as potential soil amendments in phytoremediation. Soil Sedim Contam 11:655–672Google Scholar
  270. Westphal LM, Isebrands JG (2001) Phytoremediation of Chicago’s brownfields: considerations of ecological approaches and social issues. In: Brownfields 2001 Proceedings, Chicago IL http://www.nrs.fs.fed.us/pubs/jrnl/2001/nc_2001_Westphal_00pdf. 29 Apr 2008
  271. Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780.  https://doi.org/10.1016/S0045-6535(02)00232-1 Google Scholar
  272. Xiaoyong HLSGQ (2006) A study on root expansibility of seven constructed wetland plants. Shanghai Environ Sci 4:11Google Scholar
  273. Yang SX, Deng H, Li MS (2008) Manganese uptake and accumulation in a woody hyperaccumulator, Schima superba. Plant Soil Env 54:441–446Google Scholar
  274. Yang S, Liang S, Yi L et al (2014) Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Front Environ Sci Eng 8:394–404.  https://doi.org/10.1007/s11783-013-0602-4 Google Scholar
  275. Yanqun Z, Yuan L, Jianjun C et al (2005) Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ Int 31:755–762.  https://doi.org/10.1016/j.envint.2005.02.004 Google Scholar
  276. Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156.  https://doi.org/10.1023/A:1022504826342 Google Scholar
  277. Zayed A, Gowthaman S, Terry N (1998) Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J Environ Qual 27:715–721Google Scholar
  278. Zayed AM, Pilon-Smits, deSouza EM, Lin Z-Q , Terry N (2000) Remediation of selenium-polluted soils and waters by phytovolatilization. Phytoremediation of Contaminated Soil and Water, 61–83.Google Scholar
  279. Zhang H, Dang Z, Zheng LC, Yi XY (2009) Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.). Int J Environ Sci Technol 6:249–258.  https://doi.org/10.1007/BF03327629 Google Scholar
  280. Zhang X, Xia H, Li Z et al (2010) Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Bioresour Technol 101:2063–2066.  https://doi.org/10.1016/j.biortech.2009.11.065 Google Scholar
  281. Zhang Y, He L, Chen Z et al (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83:57–62Google Scholar
  282. Zhao FJ, Dunham SJ, McGrath SP (2002) Arsenic hyperaccumulation by different fern species. New Phytol 156:27–31.  https://doi.org/10.1046/j.1469-8137.2002.00493.x Google Scholar
  283. Zhao L, Li T, Zhang X et al (2016) Pb uptake and phytostabilization potential of the mining ecotype of Athyrium wardii (Hook.) grown in Pb-contaminated soil. Clean Soil Air Water 44:1184–1190.  https://doi.org/10.1002/clen.201400870 Google Scholar
  284. Zurayk R, Sukkariyah B, Baalbaki R, Ghanem DA (2002) Ni phytoaccumulation in Mentha aquatica L. and Mentha sylvestris L. Water Air Soil Pollut 139:355–364.  https://doi.org/10.1023/A:1015840601761 Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory for Bioremediation Research, Unit Operations Laboratory, Department of BiotechnologyKumaraguru College of TechnologyCoimbatoreIndia
  2. 2.Department of Chemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Department of Food Science and NutritionPeriyar UniversitySalemIndia
  4. 4.Department of Civil EngineeringKumaraguru College of TechnologyCoimbatoreIndia
  5. 5.Department of Chemistry, College of ScienceIMSIU, Al-Imam Mohammad Ibn Saud Islamic UniversityRiyadhSaudi Arabia

Personalised recommendations