Advertisement

Nanobiosensor approaches for pollutant monitoring

  • Bambang KuswandiEmail author
Review
  • 62 Downloads

Abstract

The presence of pollutants at trace levels in the environment is a major health issue, but there are actually few rapid analytical techniques that meet the growing demand for environmental pollution control. Nanobiosensors thus appear as a powerful alternative to conventional analytical techniques, because nanobiosensors enable the highly sensitive, real-time, and high-frequency monitoring of pollutants without extensive sample preparation. Nanobiosensors are expected to be integrated into small devices for rapid screening and monitoring of a wide variety of pollutants.

Keywords

Nanotechnology Nanosensor Nanobiosensor Nanomaterials Micropollutants 

Notes

Acknowledgements

The author gratefully thanks the DRPM, Ministry of Research, Technology and Higher Education, the Republic of Indonesia, for supporting this work via International Research Collaboration and Scientific Publication 2018 (Hibah Penelitian Kerjasama Luar Negeri dan Publikasi Internasional 2018) and thanks Prof. M. Ahmad, FST USIM Malaysia, for valuable discussion regarding this work.

References

  1. Abbas A, Brimer A, Slocik JM, Tian L, Naik RR, Singamaneni S (2013) Multifunctional analytical platform on a paper strip: separation, preconcentration, and subattomolar detection. Anal Chem 85(8):3977–3983.  https://doi.org/10.1021/ac303567g CrossRefGoogle Scholar
  2. Agrawal S, Prajapati R (2012) Nanosensors and their pharmaceutical applications: a review. Int J Pharm Sci Technol 4:1528–1535Google Scholar
  3. Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787–1800.  https://doi.org/10.1021/cr970102g CrossRefGoogle Scholar
  4. Astruc D, Chardac F, Dendritic F (2001) Dendritic catalysts and dendrimers in catalysis. Chem Rev 101:2991–3024.  https://doi.org/10.1021/cr010323t CrossRefGoogle Scholar
  5. Bagheri H, Afkhami A, Khoshsafar H, Rezaei M, Shirzadmehr A (2013) Simultaneous electrochemical determination of heavy metals using a triphenylphosphine/MWCNTs composite carbon ionic liquid electrode. Sens Actuators B 186:451–460.  https://doi.org/10.1016/j.snb.2013.06.051 CrossRefGoogle Scholar
  6. Baioni AP, Vidotti M, Fiorito PA, de Torresi SIC (2008) Copper hexacyanoferrete nanoparticles modified electrode. J Electroanal Chem 622:219–224.  https://doi.org/10.1016/j.jelechem.2008.06.009 CrossRefGoogle Scholar
  7. Carrillo-Carrión C, Simonet BM, Valcárcel M (2009) Carbon nanotube–quantum dot nanocomposites as new fluorescence nanoparticles for the determination of trace levels of PAHs in water. Anal Chim Acta 652:278–284.  https://doi.org/10.1016/j.aca.2009.08.015 CrossRefGoogle Scholar
  8. Chen JR, Miao YQ, He NY, Wu XH, Li SJ (2004) Nanotechnology and biosensors. Biotechnol Adv 22(7):505–518.  https://doi.org/10.1016/j.aca.2009.08.015 CrossRefGoogle Scholar
  9. Chen L, Gu B, Zhu G, Wu Y, Liu S, Xu C (2008) Electron transfer properties and electrocatalytic behavior of tyrosinase on ZnO nanorod. J Electroanal Chem 617(1):7–13CrossRefGoogle Scholar
  10. Chen H, Hu W, Li CM (2015) Colorimetric detection of mercury(II) based on 2,2-bipyridyl inducedquasi-linear aggregation of gold nanoparticles. Sens Actuators B 215:421–427.  https://doi.org/10.1016/j.snb.2015.03.083 CrossRefGoogle Scholar
  11. Cheng ZH, Li G, Liu MM (2015) Metal-enhanced fluorescence effect of Ag and Au nanoparticles modified with rhodamine derivative in detecting Hg2+. Sens Actuators B 212:495–504.  https://doi.org/10.1016/j.snb.2015.02.050 CrossRefGoogle Scholar
  12. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668.  https://doi.org/10.1021/nl052396o CrossRefGoogle Scholar
  13. Concejero MA, Galve R, Herradon B, Gonzalez MJ, Frutos M (2001) Feasibility of high-performance immunochromatography as an isolation method for PCBs and other dioxin-like compounds. Anal Chem 73:3119–3125.  https://doi.org/10.1021/ac001387r CrossRefGoogle Scholar
  14. Crooks RM (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190.  https://doi.org/10.1021/ar000110a CrossRefGoogle Scholar
  15. Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292.  https://doi.org/10.1126/science.1062711 CrossRefGoogle Scholar
  16. Davis JJ, Coleman KS, Azamian BR, Bagshaw CB, Green MLH (2003) Chemical and biochemical sensing with modified single walled carbon nanotubes. Chemistry 9(16):3732–3739.  https://doi.org/10.1002/chem.200304872 CrossRefGoogle Scholar
  17. De Dios AE, Diaz Garcia ME (2010) Multifunctional nanoparticles: analytical prospects. Anal Chim Acta 666(1–2):1–22.  https://doi.org/10.1016/j.aca.2010.03.038 CrossRefGoogle Scholar
  18. de la Escosura-Muniz A, Ambrosi A, Merkoci A (2008) Electrochemical analysis with nanoparticle based biosystems. Trends Anal Chem 27:568–584.  https://doi.org/10.1016/j.trac.2008.05.008 CrossRefGoogle Scholar
  19. de la Rica R, Mendoza E, Lechuga LM, Matsui H (2008) Label-free pathogen detection with sensor chips assembled from peptide nanotubes. Ange Chem Int Ed 47(50):9752–9755.  https://doi.org/10.1002/ange.200804299 CrossRefGoogle Scholar
  20. Di Francia G, Quercia L, La Ferrara S, Manzo S, Chiavarini S, Cerullo F, De Filippo F, La Ferrara V, Maddalena P, Vitiello R (1999) In: Second workshop on chemical sensors and biosensors (Rome, Italy), p 18Google Scholar
  21. Ding N, Zhao H, Peng W, He Y, Zhou Y, Yuan L, Zhang Y (2012) A simple colorimetric sensor based on anti-aggregation of gold nanoparticles for Hg2+ detection. Colloids Surf A Physicochem Eng Asp 395:161–167.  https://doi.org/10.1016/j.colsurfa.2011.12.024 CrossRefGoogle Scholar
  22. Du J, Zhu B, Chen X (2013) Urine for plasmonic nanoparticle-based colorimetric detection of mercury ion. Small 9:4104–4111.  https://doi.org/10.1002/smll.201300593 CrossRefGoogle Scholar
  23. Duong HD, Reddy CVG, Rhee JI, Vo-Dinh T (2011) Amplification of fluorescence emission of CdSe/ZnS QDs entrapped in a sol–gel matrix, a new approach for detection of trace level of PAHs. Sens Actuators B 157:139–145.  https://doi.org/10.1016/j.snb.2011.03.038 CrossRefGoogle Scholar
  24. El-Deab MS, Ohsaka T (2002) An extraordinary electrocatalytic reduction of oxigen on gold nanoparticles-electrodeposited gold electrode. Electrochem Commun 4:288–292.  https://doi.org/10.1016/S1388-2481(02)00263-1 CrossRefGoogle Scholar
  25. Endo T, Okuyama A, Matsubara Y, Nishi K, Kobayashi M, Yamamura S, Morita Y, Takamura Y, Mizukami H, Tamiya E (2005) Fluorescence-based assay with enzyme amplification on a micro-flow immunosensor chip for monitoring coplanar polychlorinated biphenyls. Anal Chim Acta 531:7–13.  https://doi.org/10.1016/j.aca.2004.08.077 CrossRefGoogle Scholar
  26. Esposito E, Cortesi R, Drechsler M, Paccamiccio L, Mariani P, Contado C, Stellin E, Menegatti E, Bonina F, Puglia C (2005) Cubosome dispersions as delivery systems for percutaneuos administration of indomethacin. Pharm Res 22:2163–2173CrossRefGoogle Scholar
  27. Fang B, Kim JH, Yu JS (2008) Colloid-imprinted carbon with superb nanostructure as an efficient cathode electrocatalyst support in proton exchange membrane fuel cell. Electrochem Commun 10(4):659–668.  https://doi.org/10.1016/j.elecom.2008.01.022 CrossRefGoogle Scholar
  28. Farhadi K, Forough M, Molaei R, Hajizadeh S, Rafipour A (2012) Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sens Actuators B 161:880–885.  https://doi.org/10.1016/j.snb.2011.11.052 CrossRefGoogle Scholar
  29. Foster LE (2006) Medical nanotechnology: science, innovation, and opportunity. Pearson Education, Upper Saddle RiverGoogle Scholar
  30. Fu X, Chen L, Choo J (2017) Optical nanoprobes for ultrasensitive immunoassay. Anal Chem 89(1):124–137.  https://doi.org/10.1021/acs.analchem.6b02251 CrossRefGoogle Scholar
  31. German JB, Smilowitz JT, Zivkovic AM (2006) Lipoproteins: when size really matters. Curr Opin Colloid Interface Sci 11(2):171–183.  https://doi.org/10.1016/j.cocis.2005.11.006 CrossRefGoogle Scholar
  32. Giljohann DA, Seferos DS, Patel PC, Millstone JE, Rosi NL, Mirkin CA (2007) Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett 7:3818–3821.  https://doi.org/10.1021/nl072471q CrossRefGoogle Scholar
  33. Gong J, Zhou T, Song D, Zhang L (2010) Monodispersed Au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury(II). Sens Actuators B 150:491–497.  https://doi.org/10.1016/j.snb.2010.09.014 CrossRefGoogle Scholar
  34. Gooding JJ, Wibowo RJ, Liu Q, Yang W, Losic D, Orbons S, Mearns FJ, Shapter JG, Hibbert DB (2003) Protein electrochemistry using aligned carbon nanotube arrays. J Am Chem Soc 125(30):9006–9007.  https://doi.org/10.1021/ja035722f CrossRefGoogle Scholar
  35. Guilbault GG, Pravda M, Kreuzer M (2004) Biosensors—42 years and counting. Anal Lett 37:14481–14496.  https://doi.org/10.1081/AL-120037582 CrossRefGoogle Scholar
  36. Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598(2):181–192.  https://doi.org/10.1016/j.aca.2007.07.054 CrossRefGoogle Scholar
  37. Guo J, Chai Y, Yuan R, Song Z, Zou Z (2011) Lead(II) carbon paste electrode based on derivatized multi-walled carbon nanotubes: application to lead content determination in environmental samples. Sens Actuators B 155:639–645.  https://doi.org/10.1016/j.snb.2011.01.023 CrossRefGoogle Scholar
  38. Haruyama T (2003) Micro- and nanobiotechnology for biosensing cellular responses. Adv Drug Deliv Rev 55(3):393–401.  https://doi.org/10.1016/S0169-409X(02)00224-7 CrossRefGoogle Scholar
  39. Haun JB, Yoon TJ, Lee H, Weissleder R (2010) Magnetic nanoparticle biosensors. Nanomed Nanobiotechnol 2(3):291–304.  https://doi.org/10.1002/wnan.84 CrossRefGoogle Scholar
  40. He B, Morrow TJ, Keating CD (2008) Nanowire sensors for multiplexed detection of biomolecules. Curr Opin Chem Biol 2(5):522–528.  https://doi.org/10.1016/j.cbpa.2008.08.027 CrossRefGoogle Scholar
  41. Hochella MF (2002) Nanoscience and technology the next revolution in the Earth sciences. Earth Planet Sci Lett 203:593–605.  https://doi.org/10.1016/S0012-821X(02)00818-X CrossRefGoogle Scholar
  42. Hong S, Kang T, Oh S, Moon J, Choi I, Choi K, Yi J (2008) Label-free sensitive optical detection of polychlorinated biphenyl (PCB) in an aqueous solution based on surface plasmon resonance measurements. Sens Actuators B 134:300–306.  https://doi.org/10.1016/j.snb.2008.05.006 CrossRefGoogle Scholar
  43. Hrapovic S (2004) Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal Chem 76(4):1083–1088.  https://doi.org/10.1021/ac035143t CrossRefGoogle Scholar
  44. Huang Y, Zhang W, Xiao H, Li G (2005) An electrochemical investigation of glucose oxidase at a CdS nanoparticlesmodified electrode. Biosens Bioelectron 21(5):817–821.  https://doi.org/10.1016/j.bios.2005.01.012 CrossRefGoogle Scholar
  45. Huang H, Li L, Zhou GH, Liu ZH, Ma Q, Feng YQ, Zeng GP, Tinnefeldc P, He ZK (2011) Visual detection of melamine in milk samples based on label-free and labelled gold nanoparticles. Talanta 85:1013–1019.  https://doi.org/10.1016/j.talanta.2011.05.006 CrossRefGoogle Scholar
  46. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58.  https://doi.org/10.1038/354056a0 CrossRefGoogle Scholar
  47. Jain KK (2003) Nanodiagnostics: application of nanotechnology in molecular diagnostics. Exp Rev Mol Diagn 3(2):153–161.  https://doi.org/10.1586/14737159.3.2.153 CrossRefGoogle Scholar
  48. Jianrong C, Yuqing M, Nongyue H, Xiaohua W (2004) Nanotechnology and biosensors. Biotechnol Adv 22:505–518.  https://doi.org/10.1016/j.biotechadv.2004.03.004 CrossRefGoogle Scholar
  49. Jin RC, Wu GS, Li Z, Mirkin CA, Schatz GC (2003) What controls the melting properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 125(6):1643–1654.  https://doi.org/10.1021/ja021096v CrossRefGoogle Scholar
  50. Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8(11):867–871.  https://doi.org/10.1038/nmat2546 CrossRefGoogle Scholar
  51. Katz E, Willner I, Wang J (2004) Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 16(1–2):19–44.  https://doi.org/10.1002/elan.200302930 CrossRefGoogle Scholar
  52. Kim YR (2010) Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens Bioelectron 25(10):2366–2369.  https://doi.org/10.1016/j.bios.2010.02.031 CrossRefGoogle Scholar
  53. Ko S, Gunasekaran S, Yu J (2010) Self-indicating nanobiosensor for detection of 2,4-dinitrophenol. Food Control 21:155–161.  https://doi.org/10.1016/j.foodcont.2009.05.006 CrossRefGoogle Scholar
  54. Kumar VV, Anthony SP (2014) Silver nanoparticles based selective colorimetric sensor for Cd2+, Hg2+ and Pb2+ ions: tuning sensitivity and selectivity using co-stabilizing agents. Sens Actuators B 191:31–36.  https://doi.org/10.1016/j.foodcont.2009.05.006 CrossRefGoogle Scholar
  55. Kuswandi B (2018) Nanobiosensors for detection of micropollutants. In: Nandita D, Ranjan S, Lichtfouse E (eds) Environmental nanotechnology. Springer, Cham, pp 125–158.  https://doi.org/10.1007/978-3-319-76090-2_4 CrossRefGoogle Scholar
  56. Kuswandi B, Mascini M (2005) Enzyme inhibition based biosensors for environmental monitoring. Curr Enzyme Inhib 1:11–21CrossRefGoogle Scholar
  57. Kuswandi B, Swandari NW (2007) Simple and sensitive flow injection optical fibre biosensor based on immobilised enzyme for monitoring of pesticides. Sens Transducsers 76:978–986Google Scholar
  58. Kuswandi B, Fikriyah CI, Gani AA (2008) An optical fiber biosensor for chlorpyrifos using a single sol–gel film containing acetylcholinesterase and bromothymol blue. Talanta 74:613–622.  https://doi.org/10.1016/j.talanta.2007.06.042 CrossRefGoogle Scholar
  59. Laschi S, Mascini M, Scortichin G, Fraanek M, Mascini M (2003) Polychlorinated biphenyls (PCBs) detection in food samples using an electrochemical immunosensor. J Agric Food Chem 51:1816–1822.  https://doi.org/10.1021/jf0208637 CrossRefGoogle Scholar
  60. Lee CH, Tian L, Singamaneni S (2010) Paper-based SERS swab for rapid trace detection on real-world surfaces. ACS Appl Mater Interfaces 2:3429–3435.  https://doi.org/10.1021/am1009875 CrossRefGoogle Scholar
  61. Li Y-L, Leng Y-M, Zhang Y-J, Li T-H, Shen Z-Y, Wu A-G (2014) A new simple and reliable Hg2+ detection system based on anti-aggregation of unmodified gold nanoparticles in the presence of O-phenylenediamine. Sens Actuators B 200:140–146.  https://doi.org/10.1016/j.snb.2014.04.039 CrossRefGoogle Scholar
  62. Ligler FS, Taitt CR, Shriver-Lake LC, Sapsford KE, Shubin Y, Golden JP (2003) Array biosensor for detection of toxins. Anal Bioanal Chem 377:469–477.  https://doi.org/10.1007/s00216-003-1992-0 CrossRefGoogle Scholar
  63. Lisa M, Chouhan RS, Vinayaka AC, Manonmani HK, Thakur MS (2009) Gold nanoparticles based dipstick immunoassay for the rapid detection of dichlorodiphenyltrichloroethane: an organochlorine pesticide. Biosens Bioelectron 25:224–227.  https://doi.org/10.1016/j.bios.2009.05.006 CrossRefGoogle Scholar
  64. Liu J, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125:6642–6643.  https://doi.org/10.1021/ja034775u CrossRefGoogle Scholar
  65. Liu T, Tang J, Jiang L (2004) The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity. Biochem Biophys Res Commun 313(1):3–7.  https://doi.org/10.1016/j.bbrc.2003.11.098 CrossRefGoogle Scholar
  66. Liu X, Germaine KJ, Ryan D, Dowling DN (2007) Development of a GFP-based biosensor for detecting the bioavailability and biodegradation of polychlorinated biphenyls (PCBs). J Environ Eng Lands Manag 15:261–268Google Scholar
  67. Liu S, Yuan L, Yue X, Zheng Z, Tang Z (2008) Recent advances in nanosensors for organophosphate pesticide detection. Adv Powder Technol 19:419–441CrossRefGoogle Scholar
  68. Liu X, Germaine KJ, Ryan D, Dowling DN (2010) Genetically modified Pseudomonas biosensing biodegraders to detect PCB and chlorobenzoate bioavailability and biodegradation in contaminated soils. Bioeng Bugs 1:198–206.  https://doi.org/10.4161/bbug.1.3.12443 CrossRefGoogle Scholar
  69. Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18(4):319–326.  https://doi.org/10.1002/elan.200503415 CrossRefGoogle Scholar
  70. Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, Liang S (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474(March):619–641.  https://doi.org/10.1016/j.scitotenv.2013.12.065 CrossRefGoogle Scholar
  71. Luz RAS, Iost RM, Crespilho FN (2013) Nanobioelectrochemistry. Springer, BerlinGoogle Scholar
  72. Lvov YM, Lu ZQ, Schenkman JB, Zu XL (1998) Direct electrochemistry of myoglobin and cytochrome P450cam in alternate layer-by-layer films with DNA and other polyions. J Am Chem Soc 120(17):4073–4080.  https://doi.org/10.1021/ja9737984 CrossRefGoogle Scholar
  73. MacKenzie R, Auzelyte V, Olliges S et al (2009) Nanowire development and characterization for applications in biosensing. Nanosyst Des Technol.  https://doi.org/10.1007/978-1-4419-0255-9_7 CrossRefGoogle Scholar
  74. Mailu SN, Waryo TT, Ndangili PM, Ngece FR, Baleg AA, Baker PG, Iwuoha EI (2010) Determination of anthracene on Ag–Au alloy nanoparticles/overoxidized-polypyrrole composite modified glassy carbon electrodes. Sensors 10:9449–9465.  https://doi.org/10.3390/s101009449 CrossRefGoogle Scholar
  75. Mascini M, Macagnano A, Monti D, Del Carlo M, Paolesse R, Chen B, Warner P, D’Amico A, Di Natale C, Compagnone D (2004) Piezoelectric sensors for dioxins: a biomimetic approach. Biosens Bioelectron 20:1203–1210.  https://doi.org/10.1016/j.bios.2004.06.048 CrossRefGoogle Scholar
  76. Mascini M, Macagnano A, Scortichini G, Del Carlo M, Diletti G, D’Amico A, Di Natale C, Compagnone D (2005) Biomimetic sensors for dioxins detection in food samples. Sens Actuators B 111–112:376–384CrossRefGoogle Scholar
  77. Merkoci A, Aldavert M, Marın S et al (2005) New materials for electrochemical sensing. V: nanoparticles for DNA labeling. Trends Anal Chem 24:341–349.  https://doi.org/10.1016/j.trac.2004.11.007 CrossRefGoogle Scholar
  78. Muhammad A, Yusof NA, Hajian R, Abdullah J (2016) Construction of an electrochemical sensor based on carbon nanotubes/gold nanoparticles for trace determination of Amoxicillin in bovine milk. Sensors 16(56):1–13.  https://doi.org/10.3390/s16010056 CrossRefGoogle Scholar
  79. Musameh M, Wang J, Merkoci A, Lin Y (2002) Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrode. Electrochem Commun 4(10):743–746.  https://doi.org/10.1016/S1388-2481(02)00451-4 CrossRefGoogle Scholar
  80. Nagatani N, Takeuchi A, Hossain MA, Yuhi T, Endo T, Kerman K et al (2007) Rapid and sensitive visual detection of residual pesticides in food using acetyl-cholinesterase-based disposable membrane chips. Food Control 18:914–920.  https://doi.org/10.1016/j.foodcont.2006.05.011 CrossRefGoogle Scholar
  81. Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4129–4158.  https://doi.org/10.1002/1521-3773(20011119)40:22%3c4128:AID-ANIE4128%3e3.0.CO;2-S CrossRefGoogle Scholar
  82. Norouzi P, Pirali-Hamedani M, Ganjali MR, Faridbod F (2010) A novel acetylcholinesterase biosensor based on chitosan-gold nanoparticles film for determination of monocrotophos using FFT continuous cyclic voltammetry. Int J Electrochem Sci 5:1434–1446Google Scholar
  83. Pal S, Alocilja EC, Downes FP (2007) Nanowire labeled direct-charge transfer biosensor for detecting Bacillus species. Biosens Bioelectron 22(9):2329–2336.  https://doi.org/10.1016/j.bios.2007.01.013 CrossRefGoogle Scholar
  84. Park KW (2002) Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J Phys Chem B 106:1869–1877.  https://doi.org/10.1021/jp013168v CrossRefGoogle Scholar
  85. Park J-W, Kurosawa S, Aizawa H, Hamano H, Harada Y, Asano S, Mizushima Y, Higaki M (2006) Dioxin immunosensor using anti-2,3,7,8-TCDD antibody which was produced with mono 6-(2,3,6,7-tetrachloroxanthene-9-ylidene) hexyl succinate as a hapten. Biosens Bioelectron 22:409–414.  https://doi.org/10.1016/j.bios.2006.05.002 CrossRefGoogle Scholar
  86. Peng C, Li Z, Zhu Y, Chen W, Yuan Y, Liu L, Li Q et al (2009) Simultaneous and sensitive determination of multiplex chemical residues based on multicolor quantum dot probes. Biosens Bioelectron 24:3657–3662CrossRefGoogle Scholar
  87. Pribyl J, Hepel M, Skladal P (2006) Piezoelectric immunosensors for polychlorinated biphenyls operating in aqueous and organic phases. Sens Actuators B 113:900–910.  https://doi.org/10.1016/j.snb.2005.03.077 CrossRefGoogle Scholar
  88. Promphet N, Rattanarat P, Rangkupan R, Chailapakul O, Rodthongkum N (2015) An electrochemical sensor based ongraphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium. Sens Actuators B 207:526–534.  https://doi.org/10.1016/j.snb.2014.10.126 CrossRefGoogle Scholar
  89. Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39(11):4146–4157.  https://doi.org/10.1039/c002690p CrossRefGoogle Scholar
  90. Qu F, Yang M, Lu Y, Shen G, Yu R (2006) Amperometric determination of bovine insulin based on synergic action of carbon nanotubes and cobalt hexacyanoferrate nanoparticles stabilized by EDTA. Anal Bioanal Chem 386(2):228–234.  https://doi.org/10.1007/s00216-006-0642-8 CrossRefGoogle Scholar
  91. Ramanathan S, Patibandla S, Bandyopadhyay S, Edwards JD, Anderson J (2006) Fluorescence and infrared spectroscopy of electrochemically self assembled ZnO nanowires: evidence of the quantum confined Stark effect. J Mater Sci 17(9):651–655.  https://doi.org/10.1007/s10854-006-0021-4 CrossRefGoogle Scholar
  92. Ravindran A, Elavarasi M, Prathna TC, Raichur AM, Chandrasekaran N, Mukherjee A (2012) Selective colorimetric detection of nanomolar Cr(VI) in aqueous solutions using unmodified silver nanoparticles. Sens Actuators B 166–167:365–371.  https://doi.org/10.1016/j.snb.2012.02.073 CrossRefGoogle Scholar
  93. Richardson SD, Ternes TA (2011) Water analysis: emerging contaminants and current issues. Anal Chem 83:4614–4648.  https://doi.org/10.1021/ac200915r CrossRefGoogle Scholar
  94. Rivas GA, Rubianes MD, Rodriguez MC, Ferreyra NF, Luque GL, Pedano ML, Miscoria SA, Parado C (2007) Carbon nanotubes for electrochemical biosensing. Talanta 74(3):291–307.  https://doi.org/10.1016/j.talanta.2007.10.013 CrossRefGoogle Scholar
  95. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105(4):1547–1562.  https://doi.org/10.1021/cr030067f CrossRefGoogle Scholar
  96. Rusling JF, Sotzing G, Papadimitrakopoulosa F (2009) Designing nanomaterial-enhanced electrochemical immunosensors for cancer biomarker proteins. Bioelectrochemistry 76(1–2):189–194.  https://doi.org/10.1016/j.talanta.2007.10.013 CrossRefGoogle Scholar
  97. Salimi A, Hallaj R, Soltanian S (2009) Fabrication of a sensitive cholesterol biosensor based on cobalt-oxide nanostructures electrodeposited onto glassy carbon electrode. Electroanalysis 21(24):2693–2700.  https://doi.org/10.1002/elan.200900229 CrossRefGoogle Scholar
  98. Sanguansri P, Augustin MA (2006) Nanoscale materials development—a food industry perspective. Trends Food Sci Technol 17:547–556.  https://doi.org/10.1016/j.tifs.2006.04.010 CrossRefGoogle Scholar
  99. Sharma A, Matharu Z, Sumana G, Solanki PR, Kim CG, Malhotra BD (2010) Antibody immobilized cysteamine functionalized-gold nano particles for aflatoxin detection. Thin Solid Films 519:1213–1218.  https://doi.org/10.1016/j.tsf.2010.08.071 CrossRefGoogle Scholar
  100. Shen X, Cui Y, Pang Y, Qian H (2012) Graphene oxide nanoribbon and polyhedral oligomeric silsesquioxane assembled composite frameworks for pre-concentrating and electrochemical sensing of 1-hydroxypyrene. Electrochim Acta 59:91–99.  https://doi.org/10.1016/j.electacta.2011.10.037 CrossRefGoogle Scholar
  101. So HM, Park DW, Jeon EK, Kim YH, Kim BS, Lee CK, Choi SY, Kim SC, Chang H, Lee JO (2008) Detection and titer estimation of Escherichia coli using aptamer functionalized single-walled carbon-nano tube field-effect transistors. Small 4:197–201.  https://doi.org/10.1002/smll.200700664 CrossRefGoogle Scholar
  102. Soh N, Tokuda T, Watanabe T, Mishima K, Imato T, Masadome T, Asano Y, Okutani S, Niwa O, Brown S (2003) A surface plasmon resonance immunosensor for detecting a dioxin precursor using a gold binding polypeptide. Talanta 60:733–745.  https://doi.org/10.1016/S0039-9140(03)00139-5 CrossRefGoogle Scholar
  103. Somerset VS, Klink MJ, Baker PGL, Iwuoha EI (2007) Acetylcholinesterase polyaniline biosensor investigation of organophosphate pesticides in selected organic solvents. J Environ Sci Health B 42:297–304.  https://doi.org/10.1080/03601230701229288 CrossRefGoogle Scholar
  104. Somerset V, Baker P, Iwuoha E (2009) Mercaptobenzothiazole-on-gold organic phase biosensor systems: 1. Enhanced organosphosphate pesticide determination. J Environ Sci Health B 44:164–178.  https://doi.org/10.1080/03601230802599092 CrossRefGoogle Scholar
  105. Song KM, Jeong E, Jeon W, Cho M, Ban C (2012) Aptasensor for ampicillin using gold nanoparticle based dual fluorescence–colorimetric methods. Anal Bioanal Chem 402:2153–2161.  https://doi.org/10.1007/s00216-011-5662-3 CrossRefGoogle Scholar
  106. Sotiropoulou S, Gavalas V, Vamvakaki V, Chaniotakis NA (2003) Novel carbon materials in biosensor systems. Biosens Bioelectron 18(2–3):211–215.  https://doi.org/10.1016/S0956-5663(02)00183-5 CrossRefGoogle Scholar
  107. Stern E, Klemic JF, Routenberg DA et al (2007) Label free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445(7127):519–522.  https://doi.org/10.1038/nature05498 CrossRefGoogle Scholar
  108. Su M, Li S, Dravida VP (2003) Microcantilever resonance-based DNA detection with nanoparticle probes. Appl Phys Lett 82:3562–3567.  https://doi.org/10.1063/1.1576915 CrossRefGoogle Scholar
  109. Sugunan A, Thanachayanont C, Dutta J, Hilborn J (2005) Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci Technol Adv Mater 6:335–340.  https://doi.org/10.1016/j.stam.2005.03.007 CrossRefGoogle Scholar
  110. Tsutsumi T, Miyoshi N, Sasaki K, Maitani T (2008) Biosensor immunoassay for the screening of dioxin-like polychlorinated biphenyls in retail fish. Anal Chim Acta 617:177–183.  https://doi.org/10.1016/j.aca.2008.02.003 CrossRefGoogle Scholar
  111. Turner AP (2000) Biosensors-sense and sensitivity. Science 290:1315–1317.  https://doi.org/10.1126/science.290.5495.1315 CrossRefGoogle Scholar
  112. Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22:2848–2853.  https://doi.org/10.1016/j.bios.2006.11.024 CrossRefGoogle Scholar
  113. Verma ML (2017) Nanobiotechnology advances in enzymatic biosensors for the agri-food industry. Environ Chem Lett 15(4):555–560CrossRefGoogle Scholar
  114. Vo-Dinh T, Cullum BM, Stokes DL (2001) Nanosensors and biochips: frontiers in biomolecular diagnostics. Sens Actuators B 74(1–3):2–11.  https://doi.org/10.1016/S0925-4005(00)00705-X CrossRefGoogle Scholar
  115. Wan H, Sun Q, Li H, Sun F, Hu N, Wang P (2015) Screen-printed gold electrode with gold nanoparticles modification for simultaneous electrochemical determination of lead and copper. Sens Actuators B 209:336–342.  https://doi.org/10.1016/j.snb.2014.11.127 CrossRefGoogle Scholar
  116. Wang J (2005) Nanomaterial-based electrochemical biosensors. Analyst 130:421–426.  https://doi.org/10.1039/B414248A CrossRefGoogle Scholar
  117. Wang J, Xu D, Kawde AN, Polsky R (2001) Metal nanoparticle based electrochemical stripping potentiometric detection of DNA hybridization. Anal Chem 73:5576–5581.  https://doi.org/10.1021/ac0107148 CrossRefGoogle Scholar
  118. Wang J, Liu G, Polsky R, Merkoci A (2002) Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags. Electrochem Commun 4(9):722–726.  https://doi.org/10.1016/S1388-2481(02)00434-4 CrossRefGoogle Scholar
  119. Wang J, Kawde A, Mustafa M (2003) Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization. Analyst 128:912–916.  https://doi.org/10.1039/B303282E CrossRefGoogle Scholar
  120. Wang L, Chen W, Xu D, Shim BS, Zhu Y, Sun F, Kotov NA (2009) Simple, rapid, sensitive, and versatile SWNT Paper sensor for environmental toxin detection competitive with ELISA. Nano Lett 9(12):4147–4152.  https://doi.org/10.1021/nl902368r CrossRefGoogle Scholar
  121. Wang Z, Zhang J, Ekman JM, Kenis PJ, Lu Y (2010) DNA-mediated control of metal nanoparticle shape: one-pot synthesis and cellular uptake of highly stable and functional gold nanoflowers. Nano Lett 10(5):1886–1891.  https://doi.org/10.1021/nl100675p CrossRefGoogle Scholar
  122. Wei Y, Gao C, Meng F-L, Li H-H, Wang L, Liu J-H, Huang X-J (2012) SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II): an interesting favorable mutual interference. J Phys Chem C 116:1034–1041.  https://doi.org/10.1021/jp209805c CrossRefGoogle Scholar
  123. Wei H, Abtahi SMH, Vikesland PJ (2015) Plasmonic colorimetric and SERS sensors for environmental analysis. Environ Sci Nano 2:120–135.  https://doi.org/10.1039/c4en00211c CrossRefGoogle Scholar
  124. Xia V, Hung W, Zhang J, Niu Z, Li Z (2011) Nonenzymatic amperometric response of glucose on a nanoporous gold film electrode fabricated by a rapid and simple electrochemical method. Biosens Bioelectron 26:3555–3561CrossRefGoogle Scholar
  125. Yanez-Sedeno P, Pingarron JM (2005) Gold nanoparticle-based electrochemical biosensors. Anal Bioanal Chem 382:884–886.  https://doi.org/10.1007/s00216-005-3221-5 CrossRefGoogle Scholar
  126. Yang H, Qu L, Wimbrow AN, Jiang X, Sun Y (2007) Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR. Int J Food Microbiol 118(2):132–138.  https://doi.org/10.1016/j.ijfoodmicro.2007.06.019 CrossRefGoogle Scholar
  127. Yih TC, Al-Fandi M (2006) Engineered nanoparticles as precise drug delivery systems. J Cell Biochem 97:1184–1190.  https://doi.org/10.1002/jcb.20796 CrossRefGoogle Scholar
  128. Yılmaz E, Özgürb E, Bereli N, Türkmen D, Denizli A (2017) Plastic antibody based surface plasmon resonance nanosensors for selective atrazine detection. Mater Sci Eng C 73(1):603–610CrossRefGoogle Scholar
  129. Yu X, Chattopadhyay D, Galeska I, Papadimitrakopoulos F, Rusling JF (2003) Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochem Commun 5(5):408–411.  https://doi.org/10.1016/S1388-2481(03)00076-6 CrossRefGoogle Scholar
  130. Zhang B, Zhang ZJ, Wang B, Yan J, Li JJ, Cai SM (2001) A study of designed current oscillations of Fe in H2SO4 solution. Acta Chim Sin 59:1932Google Scholar
  131. Zhao Q, Gan Z, Zhuang Q (2002a) Electrochemical sensors based on carbon nanotubes. Electroanalysis 14:1609–1613.  https://doi.org/10.1002/elan.200290000 CrossRefGoogle Scholar
  132. Zhao Y-D, Zhang W-D, Chen H, Luo Q-M, Li SFY (2002b) Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode. Sens Actuators B 87(1):168–172.  https://doi.org/10.1016/S0925-4005(02)00232-0 CrossRefGoogle Scholar
  133. Zheng W, Zhao HY, Zhang JX, Zhou HM, Xu XX, Zheng YF, Wang YB, Cheng Y, Jang BZ (2010) A glucose/O2 biofuel cell base on nanographene platelet-modified electrodes. Electrochem Commun 12(7):869–871.  https://doi.org/10.1016/j.elecom.2010.04.006 CrossRefGoogle Scholar
  134. Zhou Y, Zhao H, He Y, Ding N, Cao Q (2011) Colorimetric detection of Cu2+ using 4-mercaptobenzoic acid modified silver nanoparticles. Colloids Surf A Physicochem Eng Asp 391:179–183.  https://doi.org/10.1016/j.colsurfa.2011.07.026 CrossRefGoogle Scholar
  135. Zhou Y, Dong H, Liu L, Li M, Xiao K, Xu M (2014) Selective and sensitive colorimetric sensor of mercury(II) based on gold nanoparticles and 4-mercaptophenylboronic acid. Sens Actuators B 196:106–111.  https://doi.org/10.1016/j.snb.2014.01.060 CrossRefGoogle Scholar
  136. Zhu N, Zhang A, He P, Fang Y (2003) Cadmium sulfide nanocluster-based electrochemical stripping detection of DNA hybridization. Analyst 128(3):260–264.  https://doi.org/10.1039/b211987k CrossRefGoogle Scholar
  137. Zhu H, Xu Y, Liu A, Kong N, Shan F, Yang W, Barrow CJ, Liu J (2015) Graphene nanodots-encaged porous gold electrode fabricated via ion beam sputtering deposition for electrochemical analysis of heavy metal ions. Sens Actuators B 206:592–600.  https://doi.org/10.1016/j.snb.2014.10.009 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Chemo and Biosensors Group, Faculty of PharmacyUniversity of JemberJemberIndonesia

Personalised recommendations