Advertisement

A method for removing persulfate interference in the analysis of the chemical oxygen demand in wastewater

  • Jieyang Yang
  • Zile Liu
  • Zequan Zeng
  • Zhanggen Huang
  • Yan Cui
Original Paper
  • 24 Downloads

Abstract

In recent years, sulfate radical-based advanced oxidation has received increasing attention for the treatment of water and wastewater. However, the chemical oxygen demand (COD), a common measure of gross organic contamination, is subject to interference from residual persulfate in the treated water. In this study, a new method, based on addition of sodium sulfite (Na2SO3) and heating, has been developed to eliminate the interference of remaining potassium persulfate (PSk) on COD analysis. Results of batch experiments show that potassium persulfate can be efficiently removed with molar ratio of Na2SO3/potassium persulfate ≥ 2 and heating at 90 °C for 60 min. This method (Na2SO3–heating treatment) was further tested in a phenol wastewater and a coal industry wastewater. The deviation of COD values of Na2SO3–heating treatment was lower than  5%, which was much lower than the deviation of the calibration curve method, of more than 14%. This new method could be applied to water samples containing persulfate and organic substances and help researchers to accurately evaluate performance of sulfate radical-based advanced oxidation processes.

Keywords

Persulfate Na2SO3–heating treatment Chemical oxygen demand Interference elimination Calibration curve method Advanced oxidation processes 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (21507140) and the Youth Scientific and Technological Foundation of Shanxi Province (201701D221232).

References

  1. Amr SSA, Aziz HA, Adlan MN, Alkasseh JMA (2014) Effect of ozone and ozone/persulfate processes on biodegradable and soluble characteristics of semiaerobic stabilized leachate. Environ Prog Sustain 33(1):184–191.  https://doi.org/10.1002/ep.11779 CrossRefGoogle Scholar
  2. An D, Westerhoff P, Zheng M, Wu M, Yang Y, Chiu C (2015) UV-activated persulfate oxidation and regeneration of NOM-Saturated granular activated carbon. Water Res 73:304–310.  https://doi.org/10.1016/j.watres.2015.01.040 CrossRefGoogle Scholar
  3. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O– in aqueous solution. J Phys Chem Ref Data 17(2):513–886.  https://doi.org/10.1063/1.555805 CrossRefGoogle Scholar
  4. Chen J, Hong W, Huang T, Zhang L, Li W, Wang Y (2016) Activated carbon fiber for heterogeneous activation of persulfate: implication for the decolorization of azo dye. Environ Sci Pollut Res 23(18):18564–18574.  https://doi.org/10.1007/s11356-016-7015-4 CrossRefGoogle Scholar
  5. Cheng X, Guo H, Liu H, Liu Y, Yang Y, Zhang Y (2016) Performance and Mechanism on Degradation of Estriol Using O3/PS Process. Ozone-Sci Eng 38(5):358–366.  https://doi.org/10.1080/01919512.2016.1170589 CrossRefGoogle Scholar
  6. Crini G, Lichtfouse E (2018) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett.  https://doi.org/10.1007/s10311-018-0785-9 Google Scholar
  7. Duan X, Sun H, Wang S (2018) Meta-free of carbocatalysis in advanced oxidation reactions. Acc Chem Res 51:678–687.  https://doi.org/10.1021/acs.accounts.7b00535 CrossRefGoogle Scholar
  8. Fagier M, Ali E, Tay K, Abas M (2016) Mineralization of organic matter from vinasse using physicochemical treatment coupled with Fe2+-activated persulfate and peroxymonosulfate oxidation. Int J Environ Sci Technol 13(4):1189–1194.  https://doi.org/10.1007/s13762-016-0963-x CrossRefGoogle Scholar
  9. Frontistis Z, Antonopoulou M, Konstantinou I, Mantzavinos D (2016) Degradation of ethyl paraben by heat-activated persulfate oxidation: statistical evaluation of operating factors and transformation pathways. Environ Sci Pollut Res 24(2):1073–1084.  https://doi.org/10.1007/s11356-016-6974-9 CrossRefGoogle Scholar
  10. Huang KC, Couttenye RA, Hoag GE (2002) Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere 49(4):413–420.  https://doi.org/10.1016/S0045-6535(02)00330-2 CrossRefGoogle Scholar
  11. Jain B, Singh AK, Kim H, Lichtfouse E, Sharma VK (2018) Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes. Environ Chem Lett 16(3):947–967.  https://doi.org/10.1007/s10311-018-0738-3 CrossRefGoogle Scholar
  12. Kang YW, Cho MJ, Hwang KY (1999) Correction of hydrogen peroxide interference on standard chemical oxygen demand test. Water Res 33(5):1247–1251.  https://doi.org/10.1016/S0043-1354(98)00315-7 CrossRefGoogle Scholar
  13. Kattel E, Dulova N, Viisimaa M, Tenno T, Trapido M (2016) Treatment of high-strength wastewater by Fe2+-activated persulphate and hydrogen peroxide. Environ Technol 37(3):352–359.  https://doi.org/10.1080/09593330.2015.1069899 CrossRefGoogle Scholar
  14. Lee E, Lee H, Kim Y, Sohn K, Lee K (2011) Hydrogen peroxide interference in chemical oxygen demand during ozone based advanced oxidation of anaerobically digested livestock wastewater. Int J Environ Sci Technol 8(2):381–388.  https://doi.org/10.1007/BF03326225 CrossRefGoogle Scholar
  15. Littlejohn D, Wang Y, Chang SG (1993) Oxidation of aqueous sulfite ion by nitrogen dioxide. Environ Sci Technol 27(10):2162–2167.  https://doi.org/10.1021/es00047a024 CrossRefGoogle Scholar
  16. Luo C, Jiang J, Ma J, Pang S, Liu Y, Song Y, Guan C, Li J, Jin Y, Wu D (2016) Oxidation of the odorous compound 2, 4, 6-trichloroanisole by UV activated persulfate: kinetics, products, and pathways. Water Res 96:12–21.  https://doi.org/10.1016/j.watres.2016.03.039 CrossRefGoogle Scholar
  17. Ministry of Environmental Protection of the People’s Republic of China (2007) Water quality—determination of the chemical oxygen demand—fast digestion spectrophotometric method. HJT399-2007Google Scholar
  18. Nogueira RFP, Oliveira MC, Paterlini WC (2005) Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate. Talanta 66(1):86–91.  https://doi.org/10.1016/j.talanta.2004.10.001 CrossRefGoogle Scholar
  19. Park S, Lee LS, Medina VF, Zull A, Waisner S (2016) Heat-activated persulfate oxidation of PFOA, 6: 2 fluorotelomer sulfonate, and PFOS under conditions suitable for in situ groundwater remediation. Chemosphere 145:376–383.  https://doi.org/10.1016/j.chemosphere.2015.11.097 CrossRefGoogle Scholar
  20. Potakis N, Frontistis Z, Antonopoulou M, Konstantinou I, Mantzavinos D (2016) Oxidation of bisphenol A in water by heat-activated persulfate. J Environ Manag 195:125–132.  https://doi.org/10.1016/j.jenvman.2016.05.045 CrossRefGoogle Scholar
  21. Soubh A, Mokhtarani N (2016) The post treatment of composting leachate with a combination of ozone and persulfate oxidation processes. RSC Adv 6(80):76113–76122.  https://doi.org/10.1039/C6RA09539A CrossRefGoogle Scholar
  22. Talinli I, Anderson G (1992) Interference of hydrogen peroxide on the standard COD test. Water Res 26(1):107–110.  https://doi.org/10.1016/0043-1354(92)90118-n CrossRefGoogle Scholar
  23. Verma P, Samanta SK (2018) Microwave-enhanced advanced oxidation processes for the degradation of dyes in water. Environ Chem Lett 16(3):969–1007.  https://doi.org/10.1007/s10311-018-0739-2 CrossRefGoogle Scholar
  24. Wang Z, Lu Y, Wu Z, Zhang Z (2014) Study on the interference of persulfate in the process of COD determination and its elimination. Ind Water Treat 34(8):78–81.  https://doi.org/10.11894/1005-829x.2014.34(8).078 Google Scholar
  25. Wang Z, Chen Y, Xie P, Shang R, Ma J (2016) Removal of Microcystis aeruginosa by UV-activated persulfate: performance and characteristics. Chem Eng J 300:245–253.  https://doi.org/10.1016/j.cej.2016.04.125 CrossRefGoogle Scholar
  26. Weng CH, Ding F, Lin YT, Liu N (2015) Effective decolorization of polyazo direct dye Sirius Red F3B using persulfate activated with Fe0 aggregate. Sep Purif Technol 147:147–155.  https://doi.org/10.1016/j.seppur.2015.03.062 CrossRefGoogle Scholar
  27. Wu T, Englehardt JD (2012) A new method for removal of hydrogen peroxide interference in the analysis of chemical oxygen demand. Environ Sci Technol 46(4):2291–2298.  https://doi.org/10.1021/es204250k CrossRefGoogle Scholar
  28. Xie P, Ma J, Liu W, Zou J, Yue S, Li X, Wiesner MR, Fang J (2015) Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals. Water Res 69:223–233.  https://doi.org/10.1016/j.watres.2014.11.029 CrossRefGoogle Scholar
  29. Xu X, Liu D, Chen W, Zong S, Liu Y (2018) Waste control by waste: efficient removal of bisphenol A with steel slag, a novel activator of peroxydisulfate. Environ Chem Lett.  https://doi.org/10.1007/s10311-018-0748-1 Google Scholar
  30. Yang S, Yang X, Shao X, Niu R, Wang L (2011) Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature. J Hazard Mater 186(1):659–666.  https://doi.org/10.1016/j.jhazmat.2010.11.057 CrossRefGoogle Scholar
  31. Zhang H, Wang Z, Liu C, Guo Y, Shan N, Meng C, Sun L (2014) Removal of COD from landfill leachate by an electro/Fe2+/peroxydisulfate process. Chem Eng J 250:76–82.  https://doi.org/10.1016/j.cej.2014.03.114 CrossRefGoogle Scholar
  32. Zhang X, Ding Z, Yang J, Cizmas L, Lichtfouse E, Sharma VK (2018) Efficient microwave degradation of humic acids in water using persulfate and activated carbon. Environ Chem Lett 16(3):1069–1075.  https://doi.org/10.1007/s10311-018-0721-z CrossRefGoogle Scholar
  33. Zhou L, Sleiman M, Ferronato C, Chovelon JM, Richard C (2017) Reactivity of sulfate radicals with natural organic matters. Environ Chem Lett 15(4):733–737.  https://doi.org/10.1007/s10311-017-0646-y CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Coal Conversion, Institute of Coal ChemistryChinese Academy of SciencesTaiyuanPeople’s Republic of China

Personalised recommendations