Advertisement

Evaluation of thermodynamic parameters for adsorption of heavy metals by green adsorbents

  • Mohamed Nasser Sahmoune
Review

Abstract

Thermodynamic parameters ΔG°, ΔH° and ΔS° are indicators of the possible nature of adsorption. This review summarizes the thermodynamic properties of metal adsorption by green adsorbents. Conclusively, the adsorption of heavy metals ions by green adsorbents is spontaneous in most cases (ΔG° < 0). Since the thermodynamic parameters were evaluated from very different adsorbent/adsorbate combinations, it is not possible to note a correlation between the corresponding enthalpy change (ΔH°) and entropy change (ΔS°) following adsorption.

Keywords

Free energy Enthalpy Entropy Green adsorbents Spontaneous 

References

  1. Ackacha MA, Meftah SA (2014) Acacia tortilis seeds as a green chemistry adsorbent to clean up the water media from cadmium cations. Int J Environ Sci Dev 5:375–379.  https://doi.org/10.7763/IJESD.2014.V5.513 CrossRefGoogle Scholar
  2. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33.  https://doi.org/10.1016/j.chemosphere.2013.10.071 CrossRefGoogle Scholar
  3. Aksakal O, Ucun H (2010) Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (reactive red 195) onto Pinus sylvestris L. J Hazard Mater 181:666–672.  https://doi.org/10.1016/j.jhazmat.2010.05.064 CrossRefGoogle Scholar
  4. Al Othman ZA, Hashem A, Habila MA (2011) Kinetic, equilibrium and thermodynamic studies of cadmium(II) adsorption by modified agricultural wastes. Molecules 16:10443–10456.  https://doi.org/10.3390/molecules161210443 CrossRefGoogle Scholar
  5. Ali RM, Hamad HA, Hussein MM, Malash GF (2016) Potential of using green adsorbent of heavy metal removal from aqueous solutions: adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol Eng 91:317–332.  https://doi.org/10.1016/j.ecoleng.2016.03.015 CrossRefGoogle Scholar
  6. Arshadi M, Amiri MJ, Mousavi S (2014) Kinetic, equilibrium and thermodynamic investigations of Ni(II), Cd(II), Cu(II) and Co(II) adsorption on barley straw ash. Water Res Ind 6:1–17.  https://doi.org/10.1016/j.wri.2014.06.001 CrossRefGoogle Scholar
  7. Aydın H, Bulut Y, Yerlikaya C (2008) Removal of copper(II) from aqueous solution by adsorption onto low-cost adsorbents. J Environ Manag 87:37–45.  https://doi.org/10.1016/j.jenvman.2007.01.005 CrossRefGoogle Scholar
  8. Bhatnagar A, Minocha AK, Sillanpaa M (2010) Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochem Eng J 48:181–186.  https://doi.org/10.1016/j.bej.2009.10.005 CrossRefGoogle Scholar
  9. Borna MO, Pirsaheb M, Niri MV, Mashizie KR, Kakavandi B, Zare MR, Asadi A (2016) Batch and column studies for the adsorption of chromium(VI) on low-cost Hibiscus Cannabinus kenaf, a green adsorbent. J Taiwan Inst Chem Eng 68:80–89.  https://doi.org/10.1016/j.jtice.2016.09.022 CrossRefGoogle Scholar
  10. Chang Y, Lai JY, Lee DJ (2016) Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters: research updated. Bioresour Technol 222:513–516.  https://doi.org/10.1016/j.biortech.2016.09.125 CrossRefGoogle Scholar
  11. Din MI, Hussain Z, Mirza ML, Shah AT, Athar MM (2014) Adsorption optimization of lead(II) using Saccharum bengalense as non-conventional low cost biosorbent: isotherm and thermodynamic modeling. Int J Phytoremediat 16:889–908.  https://doi.org/10.1080/15226514.2013.803025 CrossRefGoogle Scholar
  12. Djeribi R, Hamdaoui O (2008) Sorption of copper(II) from aqueous solutions by cedar sawdust and crushed brick. Desalination 225:95–112.  https://doi.org/10.1016/j.desal.2007.04.091 CrossRefGoogle Scholar
  13. Doke KM, Khan EM (2013) Adsorption thermodynamics to clean up wastewater; critical review. Rev Environ Sci Biotechnol 12:25–44.  https://doi.org/10.1007/s11157-012-9273-z CrossRefGoogle Scholar
  14. Gupta A, Vidyarthi SR, Sankararamakrishnan N (2015) Concurrent removal of As(III) and As(V) using green low cost functionalized biosorbent—Saccharum officinarum bagasse. J Environ Chem Eng 3:113–121.  https://doi.org/10.1016/j.jece.2014.11.023 CrossRefGoogle Scholar
  15. Güzel F, Yakut H, Topal G (2008) Determination of kinetic and equilibrium parameters of the batch adsorption of Mn(II), Co(II), Ni(II) and Cu(II) from aqueous solution by black carrot (Daucus carota L.) residues. J Hazard Mater 153:1275–1287.  https://doi.org/10.1016/j.jhazmat.2007.09.087 CrossRefGoogle Scholar
  16. Hikmat NA, Qassim BB, Khethi MT (2014) Thermodynamic and kinetic studies of lead adsorption from aqueous solution onto petiole and fiber of palm tree. Am J Chem 4:116–124.  https://doi.org/10.5923/j.chemistry.20140404.02 Google Scholar
  17. Hossain MA, Ngo HH, Guo WS, Setiadi T (2012) Adsorption and desorption of copper(II) ions onto garden grass. Bioresour Technol 121:386–395.  https://doi.org/10.1016/j.biortech.2012.06.119 CrossRefGoogle Scholar
  18. Huang L, Zeng G, Huang D, Li L, Huang P, Xia C (2009) Adsorption of lead(II) from aqueous solution onto Hydrilla verticillata. Biodegradation 20:651–660.  https://doi.org/10.1007/s10532-009-9252-4 CrossRefGoogle Scholar
  19. Iftikhar AR, Bhatti HN, Hanif MA, Nadeem R (2009) Kinetic and thermodynamic aspects of Cu(II)and Cr(III) removal from aqueous solutions using rose waste biomass. J Hazard Mater 161:941–947.  https://doi.org/10.1016/j.jhazmat.2008.04.040 CrossRefGoogle Scholar
  20. Jeyaseelan C, Gupta A (2016) Green tea leaves as a natural adsorbent for the removal of Cr(VI) from aqueous solutions. Air Soil Water Res 9:13–19.  https://doi.org/10.4137/ASWR.S35227 CrossRefGoogle Scholar
  21. Kamsonlian S, Suresh S, Ramanaiah V, Majumder CB, Chand S, Kumar A (2012) Biosorptive behaviour of mango leaf powder and rice husk for arsenic(III) from aqueous solutions. Int J Environ Sci Technol 9:565–578.  https://doi.org/10.1007/s13762-012-0054-6 CrossRefGoogle Scholar
  22. Kapur M, Mondal MK (2013) Mass transfer and related phenomena for Cr(VI) adsorption from aqueous solutions onto Mangifera indica sawdust. Chem Eng J 218:138–146.  https://doi.org/10.1016/j.cej.2012.12.054 CrossRefGoogle Scholar
  23. Kula I, Uğurlu M, Karaoğlu H, Celik A (2008) Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation. Bioresour Technol 99:492–501.  https://doi.org/10.1016/j.biortech.2007.01.015 CrossRefGoogle Scholar
  24. Kütahyalı C, Sert Ş, Çetinkaya B, Yalçıntaş E, Acar MB (2012) Biosorption of Ce(III) onto modified Pinus brutia leaf powder using central composite design. Wood Sci Technol 46:721–736.  https://doi.org/10.1007/s00226-011-0437-8 CrossRefGoogle Scholar
  25. Kyzas GZ, Kostoglou M (2014) Green adsorbents for wastewaters: a critical review. Materials 7:333–364.  https://doi.org/10.3390/ma7010333 CrossRefGoogle Scholar
  26. Li Y, Liu J, Yuan Q, Tang H, Yu F, Lv X (2016) A green adsorbent derived from banana peel for highly effective removal of heavy metal ions from water. RSC Adv 6:45041–45048.  https://doi.org/10.1039/C6RA07460J CrossRefGoogle Scholar
  27. Liu Y (2009) Is the free energy change of adsorption correctly calculated? J Chem Eng Data 54:1981–1985.  https://doi.org/10.1021/je800661q CrossRefGoogle Scholar
  28. Liu X, Lee DJ (2014) Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters. Bioresour Technol 160:24–31.  https://doi.org/10.1016/j.biortech.2013.12.053 CrossRefGoogle Scholar
  29. Meena AK, Kadirvelu K, Mishra GK, Rajagopal C, Nagar PN (2008) Adsorptive removal of heavy metals from aqueous solution by treated sawdust (Acacia arabica). J Hazard Mater 150:604–611.  https://doi.org/10.1016/j.jhazmat.2007.05.030 CrossRefGoogle Scholar
  30. Milonjic SK (2007) A consideration of the correct calculation of thermodynamic parameters of adsorption. J Serb Chem Soc 72:1363–1367.  https://doi.org/10.2298/JSC0712363M CrossRefGoogle Scholar
  31. Mohan D, Rajput S, Singh VK, Steele PH, Pittman CU Jr (2011) Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. J Hazard Mater 188:319–333.  https://doi.org/10.1016/j.jhazmat.2011.01.127 CrossRefGoogle Scholar
  32. Munagapati VS, Yarramuthi V, Nadavala SK, Alla SR, Abburi K (2010) Biosorption of Cu(II), Cd(II) and Pb(II) by Acacia leucocephala bark powder: kinetics, equilibrium and thermodynamics. Chem Eng J 157:357–365.  https://doi.org/10.1016/j.cej.2009.11.015 CrossRefGoogle Scholar
  33. Nuhoglu Y, Malkoc E (2009) Thermodynamic and kinetic studies for environmentaly friendly Ni(II) biosorption using waste pomace of olive oil factory. Bioresour Technol 100:2375–2380.  https://doi.org/10.1016/j.biortech.2008.11.016 CrossRefGoogle Scholar
  34. Ouznadji ZB, Sahmoune MN, Mezenner NY (2016) Adsorptive removal of diazinon: kinetic and equilibrium study. Desalin Water Treat 57(4):1880–1889.  https://doi.org/10.1080/19443994.2014.978386 CrossRefGoogle Scholar
  35. Prado AGS, Moura AO, Holanda MS, Carvalho TO, Andrade RDA, Pescara IC, de Oliveira AHA, Okino EYA, Pastore TCM, Silva DJ, Zara LF (2010) Thermodynamic aspects of the Pb adsorption using Brazilian sawdust samples: removal of metal ions from battery industry wastewater. Chem Eng J 160:549–555.  https://doi.org/10.1016/j.cej.2010.03.066 CrossRefGoogle Scholar
  36. Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2009) Adsorption of copper(II), chromium(III), nickel(II) and lead(II) ions from aqueous solutions by Meranti sawdust. J Hazard Mater 170:969–977.  https://doi.org/10.1016/j.jhazmat.2009.05.06 CrossRefGoogle Scholar
  37. Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2012) Removal of cadmium(II) from aqueous solutions by adsorption using Meranti wood. Wood Sci Technol 46:221–241.  https://doi.org/10.1007/s00226-010-0374-y CrossRefGoogle Scholar
  38. Ramaraju B, Reddy PMK, Subrahmanyam C (2014) Low cost adsorbents from agricultural waste for removal of dyes. Environ Prog Sustain Energy 33:38–46.  https://doi.org/10.1002/ep.11742 CrossRefGoogle Scholar
  39. Sahmoune MN (2016) The role of biosorbents in the removal of arsenic from water. Chem Eng Technol 39:1617–1628.  https://doi.org/10.1002/ceat.201500541 CrossRefGoogle Scholar
  40. Sahmoune MN (2018a) Chapter 6: thermodynamic properties of heavy metals ions adsorption by green adsorbents. In: Crini G, Lichtfouse E (eds) Green adsorbents for pollutant removal. Environmental chemistry for a sustainable world 18. Springer, Berlin, pp 193–213.  https://doi.org/10.1007/978-3-319-92111-2_6 CrossRefGoogle Scholar
  41. Sahmoune MN (2018b) Performance of Streptomyces rimosus biomass in biosorption of heavy metals from aqueous solutions. Microchem J 141:87–95.  https://doi.org/10.1016/j.microc.2018.05.009 CrossRefGoogle Scholar
  42. Sahmoune MN, Yeddou AR (2016) Potential of sawdust materials for the removal of dyes and heavy metals: examination of isotherms and kinetics. Desalin Water Treat 57:24019–24034.  https://doi.org/10.1080/19443994.2015.1135824 CrossRefGoogle Scholar
  43. Sahmoune MN, Louhab K, Boukhiar A (2008) Studies of chromium removal from tannery effluents by dead Streptomyces rimosus. Chem Prod Process Model 3:29.  https://doi.org/10.2202/1934-2659.1209 Google Scholar
  44. Sahmoune MN, Louhab K, Boukhiar A, Addad J, Barr S (2009) Kinetic and equilibrium models for the biosorption of Cr(III) on Streptomyces rimosus. Toxicol Environ Chem 91(7):1291–1303.  https://doi.org/10.1080/02772240802613731 CrossRefGoogle Scholar
  45. Salman M, Athar M, Farooq U (2015) Biosorption of heavy metals from aqueous solutions using indigenous and modified lignocellulosic materials. Rev Environ Sci Biotechnol 14:211–228.  https://doi.org/10.1007/s11157-015-9362-x CrossRefGoogle Scholar
  46. Sarada B, Krishna Prasad M, Kishore Kumar K, Murthy CVR (2017) Biosorption of Cd + 2 by green plant biomass, Araucaria heterophylla: characterization, kinetic, isotherm and thermodynamic studies. Appl Water Sci 7:3483–3496.  https://doi.org/10.1007/s13201-017-0618-1 CrossRefGoogle Scholar
  47. Senthil Kumar P (2014) Adsorption of lead(II) ions from simulated wastewater using natural waste: a kinetic, thermodynamic and equilibrium study. Environ Prog Sustain Energy 33:55–64.  https://doi.org/10.1002/ep.11750 CrossRefGoogle Scholar
  48. Senthil Kumar P, Ramalingam S, Kirupha SD, Murugesan A, Vidhyadevi T, Sivanesan S (2011) Adsorption behavior of nickel(II) onto cashew nut shell: equilibrium, thermodynamics, kinetics, mechanism and process design. Chem Eng J 167:122–131.  https://doi.org/10.1016/j.cej.2010.12.010 CrossRefGoogle Scholar
  49. Sulaiman O, Ghani NS, Rafatullah M, Hashim R (2011) Removal of zinc(II) ions from aqueous solutions using surfactant modified bamboo sawdust. Sep Sci Technol 46:2275–2282.  https://doi.org/10.1080/01496395.2011.594846 CrossRefGoogle Scholar
  50. Ucun H, Bayhan YK, Kaya Y (2008) Kinetic and thermodynamic studies of the biosorption of Cr(VI) by Pinus sylvestris Linn. J Hazard Mater 153:52–59.  https://doi.org/10.1016/j.jhazmat.2007.08.018 CrossRefGoogle Scholar
  51. Ugbe FA, Pam AA, Ikudayisi AV (2014) Thermodynamic properties of chromium(III) ion adsorption by sweet orange (Citrus sinensis) peels. Am J Anal Chem 5:666–673.  https://doi.org/10.4236/ajac.2014.510074 CrossRefGoogle Scholar
  52. Van Vinh N, Zafar M, Behera SK, Park HS (2015) Arsenic(III) removal from aqueous solution by raw and zinc loaded pine cone biochar: equilibrium, kinetics, and thermodynamics studies. Int J Environ Sci Technol 12:1283–1294.  https://doi.org/10.1007/s13762-014-050 CrossRefGoogle Scholar
  53. Vankar PS, Sarswat R, Sahu R (2012) Biosorption of zinc ions from aqueous solutions onto natural dye waste of Hibiscus rosa sinensis: thermodynamic and kinetic studies. Environ Prog Sustain Energy 31:89–99.  https://doi.org/10.1002/ep.10535 CrossRefGoogle Scholar
  54. Witek-Krowiak A (2013) Application of beech sawdust for removal of heavy metals from water: biosorption and desorption studies. Eur J Wood Prod 71:227–236.  https://doi.org/10.1007/s00107-013-0673-8 CrossRefGoogle Scholar
  55. Wu CH, Kuo CY, Guan SS (2016) Adsorption of heavy metals from aqueous solutions by waste coffee residues: kinetics, equilibrium, and thermodynamics. Desalin Water Treat 57:1–9.  https://doi.org/10.1080/19443994.2014.1002009 CrossRefGoogle Scholar
  56. Yao Z-Y, Qi J-H, Wang L-H (2010) Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto chestnut shell. J Hazard Mater 174:137–143.  https://doi.org/10.1016/j.jhazmat.2009.09.027 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Process Engineering, Faculty of Engineering SciencesUniversity of BoumerdesBoumerdesAlgeria
  2. 2.Laboratory of Coatings, Materials and EnvironmentUniversity of BoumerdesBoumerdesAlgeria

Personalised recommendations