Advertisement

Environmental Chemistry Letters

, Volume 16, Issue 1, pp 281–286 | Cite as

Fast and complete removal of the 5-fluorouracil drug from water by electro-Fenton oxidation

  • Oleksandra Ganzenko
  • Nihal Oturan
  • Ignasi Sirés
  • David Huguenot
  • Eric D. van Hullebusch
  • Giovanni Esposito
  • Mehmet A. Oturan
Original Paper

Abstract

Cytostatic drugs are a troublesome class of emerging pollutants in water owing to their potential effects on DNA. Here we studied the removal of 5-fluorouracil from water using the electro-Fenton process. Galvanostatic electrolyses were performed with an undivided laboratory-scale cell equipped with a boron-doped diamond anode and a carbon felt cathode. Results show that the fastest degradation and almost complete mineralization was obtained at a Fe2+ catalyst concentration of 0.2 mM. The absolute rate constant for oxidation of 5-fluorouracil by hydroxyl radicals was 1.52 × 109 M−1 s−1. Oxalic and acetic acids were initially formed as main short-chain aliphatic by-products, then were completely degraded. After 6 h the final solution mainly contained inorganic ions (NH4 +, NO3 and F) and less than 10% of residual organic carbon. Hence, electro-Fenton constitutes an interesting alternative to degrade biorefractory drugs.

Keywords

5-Fluorouracil Antineoplastic BDD Cytostatic Electro-Fenton Water decontamination 

Notes

Acknowledgements

O. Ganzenko thanks financial support from European Commission (EPA No. 2010-0009) through the Erasmus Mundus Joint Doctorate Programme (ETeCoS3).

References

  1. Brillas E, Sirés I (2015) Electrochemical removal of pharmaceuticals from water streams: reactivity elucidation by mass spectrometry. Trends Analyt Chem 70:112–121. doi: 10.1016/j.trac.2015.01.013 CrossRefGoogle Scholar
  2. Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631. doi: 10.1021/cr900136g CrossRefGoogle Scholar
  3. Castegnaro M, De Meo M, Laget M, Michelon J, Garren L, Sportouch MH, Hansel S (1997) Chemical degradation of wastes of antineoplastic agents 2: six anthracyclines: idarubicin, doxorubicin, epirubicin, pirarubicin, aclarubicin, and daunorubicin. Int Arch Occup Environ Health 70:378–384. doi: 10.1007/s004200050232 CrossRefGoogle Scholar
  4. Dirany A, Sirés I, Oturan N, Özcan A, Oturan MA (2012) Electrochemical treatment of the antibiotic sulfachloropyridazine: kinetics, reaction pathways, and toxicity evolution. Environ Sci Technol 46:4074–4082. doi: 10.1021/es204621q CrossRefGoogle Scholar
  5. Estrada AL, Li YY, Wang A (2012) Biodegradability enhancement of wastewater containing cefalexin by means of the electro-Fenton oxidation process. J Hazard Mater 227–228:41–48. doi: 10.1016/j.jhazmat.2012.04.079 CrossRefGoogle Scholar
  6. Feng L, van Hullebusch ED, Rodrigo MA, Esposito G, Oturan MA (2013) Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chem Eng J 228:944–964. doi: 10.1016/j.cej.2013.05.061 CrossRefGoogle Scholar
  7. Feng M, Qu R, Zhang X, Sun P, Sui Y, Wang L, Wang Z (2015) Degradation of flumequine in aqueous solution by persulfate activated with common methods and polyhydroquinone-coated magnetite/multi-walled carbon nanotubes catalysts. Water Res 85:1–10. doi: 10.1016/j.watres.2015.08.011 CrossRefGoogle Scholar
  8. Governo M, Santos MSF, Alves A, Madeira LM (2017) Degradation of the cytostatic 5-Fluorouracil in water by Fenton and photo-assisted oxidation processes. Environ Sci Pollut Res 24:844–854. doi: 10.1007/s11356-016-7827-2 CrossRefGoogle Scholar
  9. Koltsakidou A, Antonopoulou M, Sykiotou M, Evgenidou E, Konstantinou I, Lambropoulou DA (2017) Photo-Fenton and Fenton-like processes for the treatment of the antineoplastic drug 5-fluorouracil under simulated solar irradiation. Environ Sci Pollut Res 24:4791–4800. doi: 10.1007/s11356-016-8138-3 CrossRefGoogle Scholar
  10. Kosjek T, Perko S, Žigon D, Heath E (2013) Fluorouracil in the environment: analysis, occurrence, degradation and transformation. J Chromatogr A 1290:62–72. doi: 10.1016/j.chroma.2013.03.046 CrossRefGoogle Scholar
  11. Kovalova L, Siegrist H, Singer H, Wittmer A, McArdell CS (2012) Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination. Environ Sci Technol 46:1536–1545. doi: 10.1021/es203495d CrossRefGoogle Scholar
  12. Lin HHH, Lin AYC (2014) Photocatalytic oxidation of 5-fluorouracil and cyclophosphamide via UV/TiO2 in an aqueous environment. Water Res 48:559–568. doi: 10.1016/j.watres.2013.10.011 CrossRefGoogle Scholar
  13. Lutterbeck CA, Wilde ML, Baginska E, Leder C, Machado EL, Kümmerer K (2015) Degradation of 5-FU by means of advanced (photo) oxidation processes: UV/H2O2, UV/Fe2+/H2O2 and UV/TiO2—comparison of transformation products, ready biodegradability and toxicity. Sci Total Environ 527–528:232–245. doi: 10.1016/j.scitotenv.2015.04.111 CrossRefGoogle Scholar
  14. Lutterbeck CA, Wilde ML, Baginska E, Leder C, Machado EL, Kümmerer K (2016) Degradation of cyclophosphamide and 5-fluorouracil by UV and simulated sunlight treatments: assessment of the enhancement of the biodegradability and toxicity. Environ Pollut 208:467–476. doi: 10.1016/j.envpol.2015.10.016 CrossRefGoogle Scholar
  15. Martín J, Camacho-Muñoz D, Santos JL, Aparicio I, Alonso E (2012) Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: removal and ecotoxicological impact of wastewater discharges and sludge disposal. J Hazard Mater 239–240:40–47. doi: 10.1016/j.jhazmat.2012.04.068 CrossRefGoogle Scholar
  16. Oturan MA, Aaron JJ (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol 44:2577–2641. doi: 10.1080/10643389.2013.829765 CrossRefGoogle Scholar
  17. Panizza M, Dirany A, Sirés I, Haidar M, Oturan N, Oturan MA (2014) Complete mineralization of the antibiotic amoxicillin by electro-Fenton with a BDD anode. J Appl Electrochem 44:1327–1335. doi: 10.1007/s10800-014-0740-9 CrossRefGoogle Scholar
  18. Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27. doi: 10.1016/j.watres.2014.08.053 CrossRefGoogle Scholar
  19. Salazar C, Ridruejo C, Brillas E, Yáñez J, Mansilla HD, Sirés I (2017) Abatement of the fluorinated antidepressant fluoxetine (Prozac) and its reaction by-products by electrochemical advanced methods. Appl Catal B 203:189–198. doi: 10.1016/j.apcatb.2016.10.026 CrossRefGoogle Scholar
  20. Sirés I, Brillas E (2012) Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int 40:212–229. doi: 10.1016/j.envint.2011.07.012 CrossRefGoogle Scholar
  21. Sirés I, Oturan N, Oturan MA (2010) Electrochemical degradation of β-blockers. Studies on single and multicomponent synthetic aqueous solutions. Water Res 44:3109–3120. doi: 10.1016/j.watres.2010.03.005 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratoire Géomatériaux et Environnement (EA 4508), UPEMUniversité Paris-EstMarne-la-ValléeFrance
  2. 2.Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de QuímicaUniversitat de BarcelonaBarcelonaSpain
  3. 3.Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoItaly

Personalised recommendations