Environmental Chemistry Letters

, Volume 15, Issue 4, pp 747–753 | Cite as

Deep eutectic solvents as green absorbents of volatile organic pollutants

  • Leila Moura
  • Tarek Moufawad
  • Michel Ferreira
  • Hervé Bricout
  • Sébastien Tilloy
  • Eric Monflier
  • Margarida F. Costa Gomes
  • David Landy
  • Sophie Fourmentin
Original Paper


Volatile organic compounds are a major source of air pollutants. Absorption is an effective solution to treat polluted air loaded with volatile organic compounds, but most actual absorbents are often toxic and non-biodegradable. Here, we tested eutectic solvent mixtures for the absorption of volatile organic compounds for the first time. The affinity of solvent mixtures for toluene, acetaldehyde and dichloromethane was determined by measuring vapour–liquid partition coefficients and liquid phase absorption capacities. Results show that the vapour–liquid partition coefficients vary, at 30 °C, from close to zero for acetaldehyde in the mixtures choline chloride:urea, choline chloride:glycerol and tetrabutylphosphonium bromide:glycerol to 0.124 for dichloromethane in the choline chloride:urea eutectic mixture. These values are similar or even superior to those published for ionic liquids and organic solvents. Solvents based on choline chloride, a food additive, and urea, can solubilize up to 500 times more volatile organic compounds compare to water. Moreover, deep eutectic solvents are easier to prepare and more biodegradable than ionic liquids, which are also toxic. Deep eutectic solvents are more biodegradable than silicone oils, which are also expensive. Furthermore, in terms of recycling, the absorption capacities of the tested solvents remained unchanged during five absorption–desorption cycles. These findings are patented.


Air pollution Absorption Deep eutectic solvent Green chemistry Remediation 



Authors are grateful to the French Environment and Energy Management Agency (ADEME) for the financial support of this project (CORTEA 1401C0035). T. M. acknowledges the financial support from both the ADEME thesis programme and the PMCO (Pôle Métropolitain Côte d’Opale, France).


  1. Bedia J, Ruiz E, de Riva J et al (2013) Optimized ionic liquids for toluene absorption. AIChE J 59:1648–1656. doi: 10.1002/aic.13926 CrossRefGoogle Scholar
  2. Blach P, Fourmentin S, Landy D et al (2008) Cyclodextrins: a new efficient absorbent to treat waste gas streams. Chemosphere 70:374–380. doi: 10.1016/j.chemosphere.2007.07.018 CrossRefGoogle Scholar
  3. Darracq G, Couvert A, Couriol C et al (2010) Silicone oil: an effective absorbent for the removal of hydrophobic volatile organic compounds. J Chem Technol Biotechnol 85:309–313. doi: 10.1002/jctb.2331 CrossRefGoogle Scholar
  4. Ferreira M, Jérôme F, Bricout H et al (2015) Rhodium catalyzed hydroformylation of 1-decene in low melting mixtures based on various cyclodextrins and N, N′-dimethylurea. Catal Commun 63:62–65. doi: 10.1016/j.catcom.2014.11.001 CrossRefGoogle Scholar
  5. Fourmentin S, Outirite M, Blach P et al (2007) Solubilisation of chlorinated solvents by cyclodextrin derivatives. A study by static headspace gas chromatography and molecular modelling. J Hazard Mater 141:92–97. doi: 10.1016/j.jhazmat.2006.06.090 CrossRefGoogle Scholar
  6. Francisco M, van den Bruinhorst A, Kroon MC (2013) Low-transition-temperature mixtures (lttms): a new generation of designer solvents. Angew Chem Int Ed 52:3074–3085. doi: 10.1002/anie.201207548 CrossRefGoogle Scholar
  7. Heymes F, Manno-Demoustier P, Charbit F et al (2006) A new efficient absorption liquid to treat exhaust air loaded with toluene. Chem Eng J 115:225–231. doi: 10.1016/j.cej.2005.10.011 CrossRefGoogle Scholar
  8. Jérôme F, Ferreira M, Bricout H et al (2014) Low melting mixtures based on β-cyclodextrin derivatives and N, N′-dimethylurea as solvents for sustainable catalytic processes. Green Chem 16:3876–3880. doi: 10.1039/C4GC00591K CrossRefGoogle Scholar
  9. Khan FI, Ghoshal AK (2000) Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind 13:527–545. doi: 10.1016/S0950-4230(00)00007-3 CrossRefGoogle Scholar
  10. Kolb B, Ettre LS (2006) Static headspace-gas chromatography: theory and practice, 2nd edn. Wiley, HobokenCrossRefGoogle Scholar
  11. Kudłak B, Owczarek K, Namieśnik J (2015) Selected issues related to the toxicity of ionic liquids and deep eutectic solvents-a review. Environ Sci Pollut Res 22:11975–11992. doi: 10.1007/s11356-015-4794-y CrossRefGoogle Scholar
  12. Paiva A, Craveiro R, Aroso I et al (2014) Natural deep eutectic solvents—solvents for the 21st Century. ACS Sustain Chem Eng 2:1063–1071. doi: 10.1021/sc500096j CrossRefGoogle Scholar
  13. Parmar GR, Rao NN (2009) Emerging control technologies for volatile organic compounds. Crit Rev Environ Sci Technol 39:37–41. doi: 10.1080/10643380701413658 Google Scholar
  14. Pham TPT, Cho CW, Yun YS (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44:352–372. doi: 10.1016/j.watres.2009.09.030 CrossRefGoogle Scholar
  15. Quijano G, Couvert A, Amrane A et al (2011) Potential of ionic liquids for VOC absorption and biodegradation in multiphase systems. Chem Eng Sci 66:2707–2712. doi: 10.1016/j.ces.2011.01.047 CrossRefGoogle Scholar
  16. Quijano G, Couvert A, Amrane A et al (2013) Absorption and biodegradation of hydrophobic volatile organic compounds in ionic liquids. Water Air Soil Pollut 224:1528. doi: 10.1007/s11270-013-1528-y CrossRefGoogle Scholar
  17. Salar-García MJ, Ortiz-Martínez VM, Hernández-Fernández FJ et al (2017) Ionic liquid technology to recover volatile organic compounds (VOC). J Hazard Mater 321:484–499. doi: 10.1016/j.jhazmat.2016.09.040 CrossRefGoogle Scholar
  18. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082. doi: 10.1021/cr300162p CrossRefGoogle Scholar
  19. Staudinger J, Roberts PV (2001) A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions. Chemosphere 44:561–576. doi: 10.1016/S0045-6535(00)00505-1 CrossRefGoogle Scholar
  20. Wang S, Ang HM, Tade MO (2007) Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. Environ Int 33:694–705. doi: 10.1016/j.envint.2007.02.011 CrossRefGoogle Scholar
  21. Wen Q, Chen JX, Tang YL et al (2015) Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere 132:63–69. doi: 10.1016/j.chemosphere.2015.02.061 CrossRefGoogle Scholar
  22. Zhang Q, De Vigier KO, Royer S et al (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:7108. doi: 10.1039/c2cs35178a CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492 SFR Condorcet FR CNRS 3417Université du Littoral-Côte d’OpaleDunkerqueFrance
  2. 2.Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181Unité de Catalyse et de Chimie du Solide (UCCS)LensFrance
  3. 3.Institut de Chimie de Clermont-Ferrand, UMR 6296, CNRSUniversité Clermont AuvergneAubièreFrance

Personalised recommendations