Metal-binding selectivity and coordination dynamics for cyanobacterial microcystins with Zn, Cu, Fe, Mg, and Ca

  • Amy L. Pochodylo
  • Annaleise R. Klein
  • Ludmilla Aristilde
Original Paper
  • 86 Downloads

Abstract

Microcystins are toxic cyclic peptides produced worldwide by cyanobacteria in surface caters. The general structure of microcystin is inherently amenable to metal complexation. However, structural characterization of metal–microcystin complexes is lacking. Here we performed molecular dynamics simulations to obtain structures of aqueous complexes of microcystin–leucine–arginine and microcystin–arginine–arginine with Ca2+, Mg2+, Fe2+, Zn2+, and Cu2+. Results show that complexes with Cu2+ and Zn2+ were the most stable. Shorter metal-O atom distances result in more favorable complexes. For instance, the relatively stronger Zn–microcystin complexes have metal-Ocarboxyl distances of 1.78 Å, whereas the weaker Ca–microcystin complexes have this distance greater than 2.0 Å. Favorable metal complexation is attributed to the conformation of the microcystin peptide cavity that facilitated a specific coordination geometry of carboxyl and keto O atoms around the metal cation. Our findings imply that the cellular and extracellular roles of microcystin with respect to metal chelation are controlled both by the metal species and by the population of microcystin variants.

Keywords

Microcystin Metal complexes Molecular dynamics Modeling 

References

  1. Accelrys Software I (2013) Materials studio modeling environment, release 7.0. Accelrys Software Inc., San DiegoGoogle Scholar
  2. Alexova R, Dang TC, Fujii M, Raftery MJ, Waite TD, Ferrari BC, Neilan BA (2015) Specific global responses to N and Fe nutrition in toxic and non-toxic Microcystis aeruginosa. Environ Microbiol 18:401–413. doi:10.1111/1462-2920.12958 CrossRefGoogle Scholar
  3. Aristilde L, Sposito G (2008) Molecular modeling of metal complexation by a fluoroquinolone antibiotic. Environ Toxicol Chem 27:2304–2310. doi:10.1897/08-059.1 CrossRefGoogle Scholar
  4. Aristilde L, Galdi SM, Kelch SE, Aoki TG (2017) Sugar-influenced water diffusion, interaction, and retention in clay interlayer nanopores probed by theoretical simulations and experimental spectroscopies. Adv Water Resour. doi:10.1016/j.advwatres.2017.03.014 Google Scholar
  5. Ceballos-Laita L et al (2017) Microcystin-LR binds iron and iron promotes self-assembly. Environ Sci Technol. doi:10.1021/acs.est.6b05939 Google Scholar
  6. Dudev T (2003) Principles governing Mg, Ca, and Zn binding and selectivity in proteins. Chem Rev 103:773–787CrossRefGoogle Scholar
  7. Harding MM (2001) Geometry of metal–ligand interactions in proteins. Acta Crystallogr D Biol Crystallogr 57:401–411. doi:10.1107/S0907444900019168 CrossRefGoogle Scholar
  8. Humble AV, Gadd GM, Codd GA (1997) Binding of copper and zinc to three cyanobacterial microcystins quantified by differential pulse polarography. Water Res 31:1679–1686. doi:10.1016/S0043-1354(97)00033-X CrossRefGoogle Scholar
  9. Klein AR, Baldwin DS, Silvester E (2013) Proton and iron binding by the cyanobacterial toxin microcystin-LR. Environ Sci Technol 47:5178–5184. doi:10.1021/es400464e CrossRefGoogle Scholar
  10. Lee J, Walker HW (2011) Adsorption of microcystin-LR onto iron oxide nanoparticles. Colloids Surf A 373:94–100. doi:10.1016/j.colsurfa.2010.10.032 CrossRefGoogle Scholar
  11. Makower AK, Schuurmans JM, Groth D, Zilliges Y, Matthijs HC, Dittmann E (2015) Transcriptomics-aided dissection of the intracellular and extracellular roles of microcystin in Microcystis aeruginosa PCC 7806. Appl Environ Microbiol 81:544–554. doi:10.1128/AEM.02601-14 CrossRefGoogle Scholar
  12. Mantzouki E, Visser PM, Bormans M, Ibelings BW (2016) Understanding the key ecological traits of cyanobacteria as a basis for their management and control in changing lakes. Aquat Ecol 50:333–350. doi:10.1007/s10452-015-9526-3 CrossRefGoogle Scholar
  13. Meissner S, Steinhauser D, Dittmann E (2015) Metabolomic analysis indicates a pivotal role of the hepatotoxin microcystin in high light adaptation of Microcystis. Environ Microbiol 17:1497–1509. doi:10.1111/1462-2920.12565 CrossRefGoogle Scholar
  14. Pochodylo AL, Aristilde L (2017) Stability of phytochelatin complexation with Zn, Cu, Fe, Mg and Ca. Implications for metal detoxification. Environ Chem Lett. doi:10.1007/s10311-017-0609-3 Google Scholar
  15. Pochodylo AL, Aoki TG, Aristilde L (2016) Adsorption mechanisms of microcystin variant conformations at water–mineral interfaces: a molecular modeling investigation. J Colloid Interface Sci 480:166–174. doi:10.1016/j.jcis.2016.07.016 CrossRefGoogle Scholar
  16. Qi Y, Rosso L, Sedan D, Giannuzzi L, Andrinolo D, Volmer DA (2015) Seven new microcystin variants discovered from a native Microcystis aeruginosa strain–unambiguous assignment of product ions by tandem mass spectrometry. Rapid Commun Mass Spectrom 29:220–224. doi:10.1002/rcm.7098 CrossRefGoogle Scholar
  17. Raven JA, Evans MC, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60:111–150. doi:10.1023/A:1006282714942 CrossRefGoogle Scholar
  18. Rulíšek L, Vondršek J (1998) Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins. J Inorg Biochem 71:115–127. doi:10.1016/S0162-0134(98)10042-9 CrossRefGoogle Scholar
  19. Saito K, Sei Y, Miki S, Yamaguchi K (2008) Detection of microcystin–metal complexes by using cryospray ionization-Fourier transform ion cyclotron resonance mass spectrometry. Toxicon 51:1496–1498. doi:10.1016/j.toxicon.2008.03.026 CrossRefGoogle Scholar
  20. Schatz D et al (2007) Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins. Environ Microbiol 9:965–970. doi:10.1111/j.1462-2920.2006.01218.x CrossRefGoogle Scholar
  21. Shcolnick S, Keren N (2006) Metal homeostasis in cyanobacteria and chloroplasts. Balancing benefits and risks to the photosynthetic apparatus. Plant Physiol 141:805–810. doi:10.1104/pp.106.079251 CrossRefGoogle Scholar
  22. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley, New YorkGoogle Scholar
  23. Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364. doi:10.1021/jp980939v CrossRefGoogle Scholar
  24. Sutton R, Sposito G, Diallo MS, Schulten HR (2005) Molecular simulation of a model of dissolved organic matter. Environ Toxicol Chem 24:1902–1911. doi:10.1897/04-567R.1 CrossRefGoogle Scholar
  25. Yan F, Ozsoz M, Sadik O (2000) Electrochemical and conformational studies of microcystin–LR. Anal Chim Acta 409:247–255. doi:10.1016/S0003-2670(99)00888-0 CrossRefGoogle Scholar
  26. Young FM, Thomson C, Metcalf JS, Lucocq JM, Codd GA (2005) Immunogold localisation of microcystins in cryosectioned cells of Microcystis. J Struct Biol 151:208–214. doi:10.1016/j.jsb.2005.05.007 CrossRefGoogle Scholar
  27. Zilliges Y et al (2011) The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of Microcystis under oxidative stress conditions. PLoS ONE 6:e17615. doi:10.1371/journal.pone.0017615 CrossRefGoogle Scholar
  28. Zurawell RW, Chen H, Burke JM, Prepas EE (2005) Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments. J Toxicol Environ Health Part B 8:1–37. doi:10.1080/10937400590889412 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.The Institute for Comparative and Environmental ToxicologyCornell UniversityIthacaUSA
  2. 2.Biological and Environmental Engineering, College of Agriculture and Life SciencesCornell UniversityIthacaUSA

Personalised recommendations