Advertisement

Environmental Chemistry Letters

, Volume 15, Issue 3, pp 421–426 | Cite as

Pd nanoparticles entrapped in TiO2 nanotubes for complete butane catalytic combustion at 130 °C

  • Xu Yang
  • Xueyi Lu
  • Liangpeng Wu
  • Jiafeng Zhang
  • Yanqin Huang
  • Xinjun Li
Original Paper

Abstract

Air pollution by volatile organic compounds is a major health issue due to increasing industrialization and urbanization, notably in the developing countries. Cleaning organic pollutants by catalytic combustion is a potential solution, but actual methods require relatively high temperatures, thus increasing remediation costs. There is therefore a need for methods that operate at mild temperatures. Here we prepared a novel catalyst made of Pd nanoparticles entrapped in TiO2 nanotubes by vacuum-assisted impregnation. Then, we tested this catalyst for butane combustion. The catalyst was characterized by N2 adsorption–desorption isotherms, transmission electronic microscopy, energy-dispersive X-ray analysis coupled with a scanning transmission electron microscope, X-ray photoelectron spectroscopy and temperature programmed oxidation. Results show a complete combustion of butane at 130 °C, which is about 20 °C lower than temperatures required by actual catalysts made of Pd nanoparticles deposited on the exterior surface of TiO2 nanotubes. Structure characterization suggests that this higher performance at lower temperature is explained by the confinement of TiO2 nanotubes. Such a confinement could hinder the metal sintering and, in turn, facilitate the formation of PdO during oxidation on the entrapped Pd nanoparticles.

Keywords

TiO2 nanotubes Confinement effect Catalytic combustion PdO 

Notes

Acknowledgements

This work was supported by the National Scientific Foundation of China (Project No. 51661145022 and 21303210) and the Science & Technology Plan Project of Guangdong Project of Guangdong Province, China (No. 2013B050800002).

References

  1. Amini M, Naslhajian H, Farnia SMF (2014) V-doped titanium mixed oxides as efficient catalysts for oxidation of alcohols and olefins. New J Chem 38:1581–1586. doi: 10.1039/C4NJ00066H CrossRefGoogle Scholar
  2. Bychkov VY, Tulenin YP, Slinko MM, Khudorozhkov AK, Bukhtiyarov VI, Sokolov S, Korchak VN (2016) Self-oscillations during methane oxidation over Pd/Al2O3: variations of Pd oxidation state and their effect on Pd catalytic activity. Appl Catal A 522:40–44. doi: 10.1016/j.apcata.2016.04.024 CrossRefGoogle Scholar
  3. Cargnello M, Delgado Jaen JJ, Hernandez Garrido JC, Bakhmutsky K, Montini T, Calvino Gamez JJ, Gorte RJ, Fornasiero P (2012) Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science 337:713–717. doi: 10.1126/science.1222887 CrossRefGoogle Scholar
  4. Centi G (2001) Supported palladium catalysts in environmental catalytic technologies for gaseous emissions. J Mol Catal A 173:287–312. doi: 10.1016/S1381-1169(01)00155-8 CrossRefGoogle Scholar
  5. Chen W, Fan Z, Pan X, Bao X (2008) Effect of confinement in carbon nanotubes on the activity of Fischer—Tropsch iron catalyst. J Am Chem Soc 130:9414–9419. doi: 10.1021/ja8008192 CrossRefGoogle Scholar
  6. Chlala D, Giraudon JM, Nuns N, Lancelot C, Vannier R-N, Labaki M, Lamonier JF (2016) Active Mn species well dispersed on Ca2+ enriched apatite for total oxidation of toluene. Appl Catal B 184:87–95. doi: 10.1016/j.apcatb.2015.11.020 CrossRefGoogle Scholar
  7. Choudhury S, Betty CA, Bhattacharyya K, Saxena V, Bhattacharya D (2016) Nanostructured PdO thin film from Langmuir–Blodgett precursor for room-temperature H2 gas sensing. ACS Appl Mater Interf 8:16997–17003. doi: 10.1021/acsami.6b04120 CrossRefGoogle Scholar
  8. Deng Y, Nevell TG (1999) Oscillations of methane combustion over alumina-supported palladium catalysts under oxygen-deficient conditions. J Mol Catal A 142:51–60. doi: 10.1016/S1381-1169(98)00286-6 CrossRefGoogle Scholar
  9. Deng C, Yang W, Zhou J, Liu Z, Wang Y, Cen K (2015) Catalytic combustion of methane, methanol, and ethanol in microscale combustors with Pt/ZSM-5 packed beds. Fuel 150:339–346. doi: 10.1016/j.fuel.2015.02.018 CrossRefGoogle Scholar
  10. Gélin P, Primet M (2002) Complete oxidation of methane at low temperature over noble metal based catalysts: a review. Appl Catal B 39:1–37. doi: 10.1016/S0926-3373(02)00076-0 CrossRefGoogle Scholar
  11. Gholami R, Alyani M, Smith KJ (2015) Deactivation of Pd catalysts by water during low temperature methane oxidation relevant to natural gas vehicle converters. Catalysts 5:561–594. doi: 10.3390/catal5020561 CrossRefGoogle Scholar
  12. Hoffmann M, Kreft S, Georgi G, Fulda G, Pohl M-M, Seeburg D, Berger-Karin C, Kondratenko EV, Wohlrab S (2015) Improved catalytic methane combustion of Pd/CeO2 catalysts via porous glass integration. Appl Catal B 179:313–320. doi: 10.1016/j.apcatb.2015.05.028 CrossRefGoogle Scholar
  13. Krishnaraj R (2015) Control of pollution emitted by foundries. Environ Chem Lett. doi: 10.1007/s10311-015-0500-z Google Scholar
  14. Lovón-Quintana JJ, Santos JBO, Lovón ASP, La-Salvia N, Valença GP (2016) Low-temperature oxidation of methane on Pd-Sn/ZrO2 catalysts. J Mol Catal A 411:117–127. doi: 10.1016/j.molcata.2015.08.001 CrossRefGoogle Scholar
  15. Miller JB, Malatpure M (2015) Pd catalysts for total oxidation of methane: support effects. Appl Catal A 495:54–62. doi: 10.1016/j.apcata.2015.01.044 CrossRefGoogle Scholar
  16. Sanchez A, Artola A, Font X, Gea T, Barrena R, Gabriel D, Sanchez-Monedero M, Roig A, Cayuela M, Mondini C (2016) Greenhouse gas emissions from organic waste composing. Environ Chem Lett 13:223–238. doi: 10.1007/s10311-015-0507-5 CrossRefGoogle Scholar
  17. Silva M, Burrows H, Formosinho S, Alves L, Godinho A, Antunes M, Ferreira D (2007) Photocatalytic degradtion of chlorophenols using Ru(bpy)32+S2O82-. Environ Chem Lett 5:143–149. doi: 10.1007/s10311-007-0096-z CrossRefGoogle Scholar
  18. Sun X, Li Y (2003) Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem Eur J 9:2229–2238. doi: 10.1002/chem.200204394 CrossRefGoogle Scholar
  19. Xin Y, Wang H, Law CK (2014) Kinetics of catalytic oxidation of methane, ethane and propane over palladium oxide. Combust Flame 161:1048–1054. doi: 10.1016/j.combustflame.2013.10.023 CrossRefGoogle Scholar
  20. Yang X, Yu X, Long L, Wang T, Ma L, Wu L, Bai Y, Li X, Liao S (2014) Pt nanoparticles entrapped in titanate nanotubes (TNT) for phenol hydrogenation: the confinement effect of TNT. Chem Commun 50:2794–2796. doi: 10.1039/C3CC49331H CrossRefGoogle Scholar
  21. Yang X, Wu L, Ma L, Li X, Wang T, Liao S (2015) Pd nano-particles (NPs) confined in titanate nanotubes (TNTs) for hydrogenation of cinnamaldehyde. Cata Commun 59:184–188. doi: 10.1016/j.catcom.2014.10.031 CrossRefGoogle Scholar
  22. Yu S, Zhang Q, Yan R, Wang S, Li P, Chen B, Liu W, Zhang X (2014) Origin of air pollution during a weekly heavy haze episode in Hangzhou, China. Environ Chem Lett 12:543–550. doi: 10.1007/s10311-014-0483-1 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Xu Yang
    • 1
  • Xueyi Lu
    • 2
  • Liangpeng Wu
    • 1
  • Jiafeng Zhang
    • 1
  • Yanqin Huang
    • 1
  • Xinjun Li
    • 1
  1. 1.Key Laboratory of Renewable EnergyGuangzhou Institute of Energy Conversion, Chinese Academy of SciencesGuangzhouChina
  2. 2.School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations