Environmental Chemistry Letters

, Volume 15, Issue 1, pp 23–27 | Cite as

Nanomaterials for water pollution monitoring and remediation

  • Xing-yan Xue
  • Rong ChengEmail author
  • Lei Shi
  • Zhong Ma
  • Xiang ZhengEmail author


Water shortage and pollution are serious challenges for many countries. Nanomaterials are promising new tools for water quality management due to unique physicochemical properties, high economic benefit, high removal efficiency and environmental friendliness. Here we describe four types of nanomaterials used for water treatment: nanofiltration membranes, photocatalytic nanomaterials, adsorption nanomaterials and reducing nanomaterials. We discuss their properties, applications and mechanisms for pollutant removal. We also review nanomaterials used for water quality monitoring, notably nanomaterials used for the detection of trace pollutants and pathogens. These nanomaterials include carbon nanotubes, magnetic nanoparticles, noble metal nanomaterials and quantum dots.


Nanomaterials Water treatment Wastewater treatment Monitoring 



This work was supported by the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 11XNK016), which are greatly acknowledged.


  1. Andreescu S, Njagi J, Ispas C, Ravalli MT (2009) JEM spotlight: applications of advanced NMs for environmental monitoring. J Environ Monitor 11:27–40CrossRefGoogle Scholar
  2. Arnold WA, Winget P, Cramer CJ (2002) Reductive dechlorination of 1,1,2,2-tetrachloroethane. Environ Sci Technol 36:3536–3541CrossRefGoogle Scholar
  3. Bystrzejewska-Piotrowska G, Golimowski J, Urban PL (2009) Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag 29:2587–2595CrossRefGoogle Scholar
  4. Deliyanni EA, Bakoyannakis DN, Zouboulis AI, Matis KA (2003) Sorption of As (V) ions by akaganeite-type nanocrystals. Chemosphere 50:155–163CrossRefGoogle Scholar
  5. Fang W, Shi L, Wang R (2013) Interfacially polymerized composite nanofiltration hollow fiber membranes for low-pressure water softening. J Membr Sci 430:129–139CrossRefGoogle Scholar
  6. Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56:1639–1657CrossRefGoogle Scholar
  7. Hahn MA, Tabb JS, Krauss TD (2005) Detection of single bacterial pathogens with semiconductor quantum dots. Anal Chem 77:4861–4869CrossRefGoogle Scholar
  8. Hu J, Chen G, Lo IMC (2006) Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. J Environ Eng 132:709–715CrossRefGoogle Scholar
  9. Hu J, Shao D, Chen C, Sheng G, Ren X, Wang X (2011) Removal of 1-naphthylamine from aqueous solution by multiwall carbon nanotubes/iron oxides/cyclodextrin composite. J Hazard Mater 185:463–471CrossRefGoogle Scholar
  10. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211:317–331CrossRefGoogle Scholar
  11. Huang SH, Chen DH (2009) Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J Hazard Mater 163:174–179CrossRefGoogle Scholar
  12. Iram M, Guo C, Guan Y, Ishfaq A, Liu H (2010) Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres. J Hazard Mater 181:1039–1050CrossRefGoogle Scholar
  13. Klimkova S, Cernik M, Lacinova L, Filip J, Jancik D, Zboril R (2011) Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Chemosphere 82:1178–1184CrossRefGoogle Scholar
  14. Kwon S, Fan M, Cooper AT, Yang H (2008) Photocatalytic applications of micro-and nano-TiO2 in environmental engineering. Crit Rev Enviorn Sci Technol 38:197–226CrossRefGoogle Scholar
  15. Li X, Zhang W (2007) Sequestration of metal cations with zerovalent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J Phys Chem C 111:6939–6946CrossRefGoogle Scholar
  16. Lin YH, Tseng WL (2010) Ultrasensitive sensing of Hg2+ and CH3Hg+ based on the fluorescence quenching of lysozyme type VI-stabilized gold nanoclusters. Anal Chem 82:9194–9200CrossRefGoogle Scholar
  17. Lin YT, Weng CH, Chen FY (2008) Effective removal of AB24 dye by nano/micro-size zerovalent iron. Sep Purif Technol 64:26–30CrossRefGoogle Scholar
  18. Lisha KP, Anshup PT (2009a) Enhanced visual detection of pesticides using gold nanoparticles. J Environ Sci Health B 44:697–705CrossRefGoogle Scholar
  19. Lisha KP, Anshup PT (2009b) Enhanced visual detection of pesticides using gold nanoparticles. J Environ Sci Health B 44:697–705CrossRefGoogle Scholar
  20. Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39:1338–1345CrossRefGoogle Scholar
  21. Lu C, Chiu H, Liu C (2006) Removal of zinc(II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Ind Eng Chem Res 45:2850–2855CrossRefGoogle Scholar
  22. Mohammad AW, Teow YH, Ang WL, Chung YT, Oatley-Radcliffe DL, Hilal N (2015) Nanofiltration membranes review: recent advances and future prospects. Desalination 356:226–254CrossRefGoogle Scholar
  23. Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976CrossRefGoogle Scholar
  24. Nagaveni K, Sivalingam G, Hegde MS, Madras G (2004) Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO2. Appl Catal B Environ 48:83–93CrossRefGoogle Scholar
  25. Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42:9005–9013CrossRefGoogle Scholar
  26. Pyrzyńska K, Bystrzejewski M (2010) Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloid Surf A 362:102–109CrossRefGoogle Scholar
  27. Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946CrossRefGoogle Scholar
  28. Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58:224–231CrossRefGoogle Scholar
  29. Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7:331–342CrossRefGoogle Scholar
  30. Schäfer AI, Akanyeti I, Semião AJC (2011) Micropollutant sorption to membrane polymers: a review of mechanisms for estrogens. Adv Colloid Interface 164:100–117CrossRefGoogle Scholar
  31. Scott TB, Popescu IC, Crane RA, Noubactep C (2011) Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants. J Hazard Mater 186:280–287CrossRefGoogle Scholar
  32. Sen M, Manna A, Pal P (2010) Removal of arsenic from contaminated groundwater by membrane-integrated hybrid treatment system. J Membr Sci 354:108–113CrossRefGoogle Scholar
  33. Sharma YC, Srivastava V, Singh VK, Kaul SN, Weng CH (2009) Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environ Technol 30:583–609CrossRefGoogle Scholar
  34. Su F, Lu C (2007) Adsorption kinetics, thermodynamics and desorption of natural dissolved organic matter by multiwalled carbon nanotubes. J Environ Sci Health A 42:1543–1552CrossRefGoogle Scholar
  35. Verliefde A, Cornelissen E, Amy G, Van der Bruggen B, van Dijk H (2007) Priority organic micropollutants in water sources in Flanders and the Netherlands and assessment of removal possibilities with nanofiltration. Environ Pollut 146:281–289CrossRefGoogle Scholar
  36. White BR, Stackhouse BT, Holcombe JA (2009) Magnetic γ-Fe2O3 nanoparticles coated with poly-l-cysteine for chelation of As(III), Cu(II), Cd(II), Ni(II), Pb(II) and Zn(II). J Hazard Mater 161:848–853CrossRefGoogle Scholar
  37. Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie XG, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10CrossRefGoogle Scholar
  38. Xue XY, Cheng R, Shi L, Ma Z, Zheng X (2016) Nanomaterials for monitoring and remediation of water pollution. Nanosci Food Agric 2. Springer International Publishing 21: 207–233. ISBN:978-3-319-39305-6, doi: 10.1007/978-3-319-39306-3 Google Scholar
  39. Yang Y, Wang H, Li J, He B, Wang T, Liao S (2012) Novel functionalized nano-TiO2 loading electrocatalytic membrane for oily wastewater treatment. Environ Sci Technol 46:6815–6821CrossRefGoogle Scholar
  40. Zhang S, Niu H, Hu Z, Cai Y, Shi Y (2010) Preparation of carbon coated Fe3O4 nanoparticles and their application for solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. J Chromatogr A 1217:4757–4764CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Environment and Natural ResourcesRenmin University of ChinaBeijingChina

Personalised recommendations