Advertisement

Environmental Chemistry Letters

, Volume 15, Issue 1, pp 101–123 | Cite as

Salicylic acid to decrease plant stress

  • Abdul Basit Wani
  • Hemlata Chadar
  • Abdul Haleem Wani
  • Simranjeet Singh
  • Niraj UpadhyayEmail author
Review

Abstract

Pollution and climate change degrade plant health. Plant stress can be decreased by application of salicylic acid, an hormone involved in plant signaling. Salicylic acid indeed initiates pathogenesis-related gene expression and synthesis of defensive compounds involved in local resistance and systemic acquired resistance. Salicylic acid may thus be used against pathogen virulence, heavy metal stresses, salt stress, and toxicities of other elements. Applied salicylic acid improves photosynthesis, growth, and various other physiological and biochemical characteristics in stressed plants. Salicylic acid antagonizes the oxidative damaging effect of metal toxicity directly by acting as an antioxidant to scavenge the reactive oxygen species and by activating the antioxidant systems of plants and indirectly by reducing uptake of metals from their medium of growth. We review here the use of exogenous salicylic acid in alleviating bacterial, fungal, and viral diseases, heavy metal toxicity, toxicity of essential micronutrients, and salt stress.

Keywords

Exogenous salicylic acid Plant diseases Biotic stress Abiotic stress Heavy metal Micronutrient toxicity 

Notes

Acknowledgments

Authors are thankful to Lovely professional University and Dr. Harisingh Gour Central University, Saugor for providing infrastructural support and to University Grant Commission for financial assistance through UGC start-up Grant No. F. 30-70/2014(BSR) to Dr. Niraj Upadhyay.

References

  1. Achuo EA, Audenaert K, Meziane H, Hofte M (2004) The salicylic acid dependent defense pathway is effective against different pathogens in tomato and tobacco. Plant Pathol 53:65–72. doi: 10.1111/j.1365-3059.2004.00947.x CrossRefGoogle Scholar
  2. Adie BA, Pérez-Pérez J, Pérez-Pérez MM, Godoy M, Sánchez-Serrano JJ (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665–1681. doi: 10.1105/tpc.106.048041 CrossRefGoogle Scholar
  3. Agami AR, Mohamed GF (2013) Exogenous treatment with indole-3-aceticacid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicol Environ Saf 94:164–171. doi: 10.1016/j.ecoenv.2013.04.013 CrossRefGoogle Scholar
  4. Alkahtani M, Omer SA, El-Naggar MA, Abdel-Kareem EM, Mahmoud MA (2011) Pathogenesis-related protein and phytoalexin induction against cucumber powdery mildew by elicitors. Int J Plant Pathol 2:63–71. doi: 10.3923/ijpp.2011.63.71 CrossRefGoogle Scholar
  5. Alonso-Ramırez A, Rodrıguez D, Reyes D, Jimenez JA, Nicolas G, Lopez-Climent M, Gomez-Cadenas A, Nicolas C (2009) Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol 150:1335–1344. doi: 10.1104/pp.109.139352 CrossRefGoogle Scholar
  6. AL-Saleh MA (2011) Pathogenic variability among five bacterial isolates of Xanthomonas campestris pv. vesicatoria, causing spot disease on tomato and their response to salicylic acid. J Saudi Soc Agric Sci 10:47–51. doi: 10.1016/j.jssas.2010.08.001 CrossRefGoogle Scholar
  7. Amira MS, Qados A (2011) Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L). J Saudi Soc Agric Sci 10:7–15. doi: 10.1016/j.jssas.2010.06.002 CrossRefGoogle Scholar
  8. Anand A, Uppalapati SR, Ryu C, Allen SN, Kang L, Tang Y, Mysore KS (2008) Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol 146:703–715. doi: 10.1104/pp.107.111302 CrossRefGoogle Scholar
  9. Antoniw JF, White RF (1980) The effects of aspirin and polyacrylic acid on soluble leaf proteins and resistance to virus infection in five cultivars of tobacco. Phytopathol Z 98:331–341. doi: 10.1111/j.1439-0434.1980.tb03748.x CrossRefGoogle Scholar
  10. Barcelo J, Poschenrieder C (2002) Fast root growth responses, root exudates and internal detoxification as clues to the mechanisms of aluminum toxicity and resistance. Environ Exp Bot 48:75–92. doi: 10.1016/S0098-8472(02)00013-8 CrossRefGoogle Scholar
  11. Barroso JB, Corpas FJ, Carreras A, Sandalio LM, Valderrama R, Palma JM, Lupiáñez JA, del Río LA (1999) Localization of nitric-oxide synthase in plant peroxisomes. J Biol Chem 274:36729–36733. doi: 10.1074/jbc.274.51.36729 CrossRefGoogle Scholar
  12. Belhadj A, Telef N, Cluzet S, Bouscaut J, Corio-Costet MF, Merillon JM (2008) Ethephon elicits protection against Erysiphe necator in grapevine. J Agric Food Chem 56:5781–5787. doi: 10.1021/jf800578c CrossRefGoogle Scholar
  13. Beligni MV, Lamattina L (1999) Is nitric oxide toxic or protective? Trends Plant Sci 4:299–300. doi: 10.1016/S1360-1385(99)01451-X CrossRefGoogle Scholar
  14. Beligni MV, Lamattina L (2000) Nitric oxide induces seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221. doi: 10.1007/PL00008128 CrossRefGoogle Scholar
  15. Beligni MV, Lamattina L (2001) Nitric oxide in plants: the history is just beginning. Plant, Cell Environ 24:267–278. doi: 10.1046/j.1365-3040.2001.00672.x CrossRefGoogle Scholar
  16. Belkhadi LA, Hediji H, Abbes Z, Nouairi I, Barhoumi Z, Zarrouk M, Chaıbi W, Djebali W (2010) Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum. Ecotoxicol Environ Saf 73:1004–1101. doi: 10.1016/j.ecoenv.2010.03.009 CrossRefGoogle Scholar
  17. Bouazizi H, Jouili H, Geitmann A, Ferjani EE (2010) Copper toxicity in expanding leaves of Phaseolus vulgaris L.: antioxidant enzyme response and nutrient element uptake. Ecotoxicol Environ Saf 73:1304–1308. doi: 10.1016/j.ecoenv.2010.05.014 CrossRefGoogle Scholar
  18. Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351:714–717. doi: 10.1038/351714a0 CrossRefGoogle Scholar
  19. Brodersen P, Petersen M, Nielsen HB, Zhu S, Newman MA, Shokat KM, Rietz S, Parker J, Mundy J (2006) Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene dependent responses via EDS1 and PAD4. Plant J 47:532–546. doi: 10.1111/j.1365-313X.2006.02806.x CrossRefGoogle Scholar
  20. Camacho-Cristóbal JJ, Rexach J, González-Fontes A (2008) Boron in plants: deficiency and toxicity. J Integr Plant Biol 50:1247–1255. doi: 10.1111/j.1744-7909.2008.00742.x CrossRefGoogle Scholar
  21. Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63. doi: 10.1016/S0092-8674(00)81858-9 CrossRefGoogle Scholar
  22. Carvalhais LC, Dennis PG, Schenk PM (2014) Plant defense inducers rapidly influence the diversity of bacterial communities in a potting mix. Appl Soil Ecol 84:1–5. doi: 10.1016/j.apsoil.2014.06.011 CrossRefGoogle Scholar
  23. Chan ZL, Qin GZ, Xu XB, Li BQ, Tian SP (2007) Proteome approach to characterize proteins induced by antagonist yeast and salicylic acid in peach fruit. J Proteome Res 6:1677–1688. doi: 10.1021/pr060483r CrossRefGoogle Scholar
  24. Chen C, Huang D, Liu J (2009) Functions and toxicity of nickel in plants: recent advances and future prospects. Clean 37:304–313. doi: 10.1002/clen.200800199 CrossRefGoogle Scholar
  25. Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10(8):322–328. doi: 10.1016/S0962-8924(00)01800-6 CrossRefGoogle Scholar
  26. Chisholm ST, Coaker G, Day B, Stakawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814. doi: 10.1016/j.cell.2006.02.008 CrossRefGoogle Scholar
  27. Contreras L, Mella D, Moenne A, Correa JA (2009) Differential responses to copper-induced oxidative stress in the marine macroalgae Lessonia nigrescens and Scytosiphon lomentaria (Phaeophyceae). Aquat Toxicol 94:94–102. doi: 10.1016/j.aquatox.2009.06.004 CrossRefGoogle Scholar
  28. Cooney RV, Harwood PJ, Custer LJ, Franke AA (1994) Light-mediated conversion of nitrogen dioxide to nitric oxide by carotenoids. Environ Health Perspect 102:460–462. doi: 10.1289/ehp.94102460 CrossRefGoogle Scholar
  29. Csiszár J, Horváth E, Váry Z, Gallé Á, Bela K, Brunner S, Tari I (2014) Glutathione transferase supergene family in tomato: salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiol Biochem 78:15–26. doi: 10.1016/j.plaphy.2014.02.010 CrossRefGoogle Scholar
  30. Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N, Vanhoudt N, Van-Sanden S, Van-Belleghem F, Guisez Y, Colpaert J, Vangronsveld J (2011) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol 168:309–316. doi: 10.1016/j.jplph.2010.07.010 CrossRefGoogle Scholar
  31. DebRoy S, Thilmony R, Kwack YB, Nomura K, He SY (2004) A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc Natl Acad Sci USA 101:9927–9932. doi: 10.1073/pnas.0401601101 CrossRefGoogle Scholar
  32. Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266:1247–1250. doi: 10.1126/science.266.5188.1247 CrossRefGoogle Scholar
  33. Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107(31):5–321. doi: 10.1104/pp.107.2.315 CrossRefGoogle Scholar
  34. Dempsey DA, Shah J, Klessig DF (1999) Salicylic acid and disease resistance in plants. Crit Rev Plant Sci 18:547–575. doi: 10.1080/07352689991309397 CrossRefGoogle Scholar
  35. Du L, Ali GS, Simons KA, Hou J, Yang T, Reddy ASN, Poovaiah BW (2009) Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nature 457:1154–1159. doi: 10.1038/nature07612 CrossRefGoogle Scholar
  36. Durner J, Shah J, Klessig DF (1997) Salicylic acid and disease resistance in plants. Trends Plant Sci 2:266–274. doi: 10.1016/S1360-1385(97)86349-2 CrossRefGoogle Scholar
  37. El-Feky SS, El-Shintinawy FA, Shaker EM, El-Din HAS (2012) Effect of elevated boron concentrations on the growth and yield of barley (Hordeum vulgare L.) and alleviation of its toxicity using different plant growth modulators. Aust J Crop Sci 6(12):1687–1695Google Scholar
  38. El-Feky SS, El-Shintinawy FA, Shaker EM (2014) Role of CaCl2 and salicylic acid on metabolic activities and productivity of boron stressed barley (Hordium vulgare L.). Int J Curr Microbiol App Sci 3(2):368–380Google Scholar
  39. El-tayeb MA, El-Enany AE, Ahmad NI (2006) Salicylic acid induces adaptive responses in sunflower (Helianthus annuus L.). Int J Bot 2(4):279–372. doi: 10.1007/s10725-006-9118-2 CrossRefGoogle Scholar
  40. Eraslan F, Inal A, Gunes A, Alpaslan M (2007) Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Sci Hortic 113:120–128. doi: 10.1016/j.scienta.2007.03.012 CrossRefGoogle Scholar
  41. Esteban E, Morenoa E, Peñalosa J, Cabrero JI, Millán M, Zornoza P (2008) Short and long-term uptake of Hg in white lupin plants: kinetics and stress indicators. Environ Exp Bot 62:316–322. doi: 10.1016/j.envexpbot.2007.10.006 CrossRefGoogle Scholar
  42. Fayez KA, Bazaid SA (2014) Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J Saudi Soc Agric Sci 13:45–55. doi: 10.1016/j.jssas.2013.01.001 CrossRefGoogle Scholar
  43. Fazelian N, Asrar Z (2011) Arsenic and salicylic acid interaction on the growth and some other physiological parameters in Matricaria recutita. J Plant Biol 8:1–11Google Scholar
  44. Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3(182):1–18. doi: 10.3389/fphys.2012.00182 CrossRefGoogle Scholar
  45. Ford KA, Casida JE, Chandran D, Gulevich AG, Okrent RA, Durkin KA, Sarpong R, Bunnelle EM, Wildermuth MC (2010) Neonicotinoid insecticides induce salicylateassociated plant defense responses. Proc Natl Acad Sci USA 107(41):17527–17532. doi: 10.1073/pnas.1013020107 CrossRefGoogle Scholar
  46. Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Sign 11:861–905. doi: 10.1089/ars.2008.2177 CrossRefGoogle Scholar
  47. Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Glutathione-mediated nickel tolerance in Thlaspi nickel hyper accumulators. Plant Physiol 137:1082–1091. doi: 10.1104/pp.104.055293 CrossRefGoogle Scholar
  48. Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Fu XD (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–232. doi: 10.1038/nature11162 CrossRefGoogle Scholar
  49. Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9:303–321. doi: 10.1007/s10311-011-0313-7 CrossRefGoogle Scholar
  50. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227. doi: 10.1146/annurev.phyto.43.040204.135923 CrossRefGoogle Scholar
  51. Gouia H, Ghorbal MH, Meyer C (2000) Effects of cadmium on activity of nitrate reductase and on othe renzymes of the nitrate assimilation pathway in bean. Plant Physiol Biochem 38:629–638. doi: 10.1016/S0981-9428(00)00775-0 CrossRefGoogle Scholar
  52. Gouvea CMCP, Souza JF, Magalhaes ACN, Martins IS (1997) NO-releasing substances that induce growth elongation in maize root segments. Plant Growth Regul 21:183–187. doi: 10.1023/A:1005837012203 CrossRefGoogle Scholar
  53. Gunes A, Pilbeam DJ, Inal A (2009) Effect of arsenic-phosphorous interaction on arsenic-induced oxidative stress in chickpea plants. Plant Soil 314:211–220. doi: 10.1007/s11104-008-9719-9 CrossRefGoogle Scholar
  54. Guo Q, Meng L, Maoa P, Jia Y, Shi Y (2013) Role of exogenous salicylic acid in alleviating cadmium induced toxicity in Kentucky bluegrass. Biochem Syst Ecol 50:269–276. doi: 10.1016/j.bse.2013.05.002 CrossRefGoogle Scholar
  55. Gupta VK, Sethi B, Upadhyay N, Kumar S, Singh R, Singh LP (2011) Iron(III) selective electrode based on S-Methyl N-(methylcarbamoyloxy)Thioacetimidate as a sensing material. Int J Electrochem Sci 6:650–663Google Scholar
  56. Gupta DK, Huang HG, Corpas FJ (2013) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res Int 20:2150–2161. doi: 10.1007/s11356-013-1485-4 CrossRefGoogle Scholar
  57. Gust AA, Nurnberger T (2012) A life or death switch. Nature 486:198–199. doi: 10.1038/486198a CrossRefGoogle Scholar
  58. Hadi MR, Balali GR (2010) The effect of salicylic acid on the reduction of Rizoctonia solani damage in the tubers of marfona potato cultivar. Am Eurasian J Agric Environ Sci 7(4):492–496Google Scholar
  59. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11. doi: 10.1093/jexbot/53.366.1 CrossRefGoogle Scholar
  60. Hasan S, Fariduddin Q, Ali B, Hayat S, Ahmad A (2009) Cadmium: toxicity and tolerance in plants. J Environ Biol 30:165–174. doi: 10.1007/s11356-009-0224-3 CrossRefGoogle Scholar
  61. Hauck M, Paul A, Gross S, Raubuch M (2003) Manganese toxicity in epiphytic lichens: chlorophyll degradation and interaction with iron and phosphorus. Environ Exp Bot 49:181–191. doi: 10.1016/S0098-8472(02)00069-2 CrossRefGoogle Scholar
  62. Hayat Q, Hayat S, Irfan S, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25. doi: 10.1016/j.envexpbot.2009.08.005 CrossRefGoogle Scholar
  63. He W, Li H, Li X, Li M, Chen Y (2007) Tetranychus urticae Koch induced accumulation of salicylic acid in frijole leaves. Pestic Biochem Physiol 88:78–81. doi: 10.1016/j.pestbp.2006.09.002 CrossRefGoogle Scholar
  64. Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette MLM, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765. doi: 10.1186/1471-2229-9-32 CrossRefGoogle Scholar
  65. Holopainen JK, Heijari J, Nerg AM, Vuorinen M, Kainulainen P (2009) Potential for the use of exogenous chemical elicitors in disease and insect pest management of conifer seedling production. Open For Sci J 2:17–24. doi: 10.2174/1874398600902010017 CrossRefGoogle Scholar
  66. Horvath E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26:290–300. doi: 10.1007/s00344-007-9017-4 CrossRefGoogle Scholar
  67. Hukkanen A, Kostamo K, Kärenlampi S, Kokko H (2008) Impact of agrochemicals on Peronospora sparsa and phenolic profiles in three Rubus arcticus cultivars. J Agric Food Chem 56:1008–1016. doi: 10.1021/jf072973p CrossRefGoogle Scholar
  68. Hussain A, Abbas N, Arshad F, Akram M, Khan ZI, Ahmad K, Mansha M, Mirzaei F (2013) Effects of diverse doses of Lead (Pb) on different growth attributes of Zea-Mays L. Agric Sci 4(5):262–265. doi: 10.4236/as.2013.45037 CrossRefGoogle Scholar
  69. Idrees M, Naeema M, Aftab T, Khan MMA (2013) Salicylic acid restrains nickel toxicity, improves antioxidant defense system and enhances the production of anticancer alkaloids in Catharanthus roseus (L.). J Hazard Mater 252–253:367–374. doi: 10.1016/j.jhazmat.2013.03.005 CrossRefGoogle Scholar
  70. Jain LY, Ya YL, Yue JZ, Shan Z, Yun RW, Ping W, Shao JZ (2008) Cell wall polysaccharides are specifically involved in the exclusion of aluminum form the rice root apex. Plant Physiol 146:602–611. doi: 10.1104/pp.107.111989 CrossRefGoogle Scholar
  71. Jih P, Chen Y, Jeng S (2003) Involvement of hydrogen peroxide and nitric oxide in expression of the ipomoelin gene from sweet potato. Plant Physiol 132:381–389. doi: 10.1104/pp.102.015701 CrossRefGoogle Scholar
  72. Jing C, Cheng Z, Li-ping L, Zhong-yang S, Xue-bo P (2007) Effects of exogenous salicylic acid on growth and H2O2-metabolizing enzymes in rice seedlings under lead stress. J Environ Sci 19:44–49CrossRefGoogle Scholar
  73. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329. doi: 10.1038/nature05286 CrossRefGoogle Scholar
  74. Kahle H (1993) Response of roots of trees to heavy metals. Environ Exp Bot 33:99–119. doi: 10.1016/0098-8472(93)90059-O CrossRefGoogle Scholar
  75. Kaltdorf M, Naseem M (2013) How many salicylic acid receptors does a plant cell need? Sci Signal 6(279 jc3):1–3. doi: 10.1126/scisignal.2003944 CrossRefGoogle Scholar
  76. Keeley JE, Fotheringham CJ (1997) Trace gas emissions and smoke-induced seed germination. Science 276:1248–1250. doi: 10.1126/science.276.5316.1248 CrossRefGoogle Scholar
  77. Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem 80:67–74. doi: 10.1016/j.plaphy.2014.03.026 CrossRefGoogle Scholar
  78. Khandaker L, Masum akond ASMG, Shinya OBA (2011) Foliar application of salicylic acid improved the growth, yield and leafs bioactive compounds in red Amaranth (Amaranthus tricolor L.). Veg Crops Res Bull 74:77–86. doi: 10.2478/v10032-011-0006-6 CrossRefGoogle Scholar
  79. Klessig DF, Malamy J (1994) The salicylic acid signal in plants. Plant Mol Biol 26:1439–1458. doi: 10.1007/978-94-011-0239-1_12 CrossRefGoogle Scholar
  80. Klessig DF, Durner J, Noad R et al (2000) Nitric oxide and salicylic acid signaling in plant defense. PNAS 97(16):8849–8855. doi: 10.1073/pnas.97.16.8849 CrossRefGoogle Scholar
  81. Kobayashi K (2014) Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis. Environ Microbiol 12613:1462–2920. doi: 10.1111/1462-2920.12613 CrossRefGoogle Scholar
  82. Kochian LV, Pineros MS, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195. doi: 10.1007/1-4020-4099-7_9 CrossRefGoogle Scholar
  83. Kohler A, Schwindling S, Conrath U (2002) Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves requires the NPR1/NIM1 gene in Arabidopsis. Plant Physiol 128(3):1046–1056CrossRefGoogle Scholar
  84. Kovács V, Gondor OK, Szalai G, Darkó É, Majláth I, Janda T, Pál M (2014) Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance. J Hazard Mater 280:12–19. doi: 10.1016/j.jhazmat.2014.07.048 CrossRefGoogle Scholar
  85. Krantev A, Yordanova R, Janda T, Szalai G, Popov L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931. doi: 10.1016/j.jplph.2006.11.014 CrossRefGoogle Scholar
  86. Kumar D (2014) Salicylic acid signaling in disease resistance. Plant Sci 228:127–134. doi: 10.1016/j.plantsci.2014.04.014 CrossRefGoogle Scholar
  87. Kumar V, Singh S, Singh J, Upadhyay N (2015a) Potential of plant growth promoting traits by bacteria isolated from heavy metal contaminated soils. Bull Environ Contam Toxicol 94(6):807–814. doi: 10.1007/s00128-015-1523-7 CrossRefGoogle Scholar
  88. Kumar V, Upadhyay N, Kumar V, Sharma S (2015b) A review on sample preparation and chromatographic determination of acephate and methamidophos in different samples. Arab J Chem 8(5):624–631CrossRefGoogle Scholar
  89. Kundua S, Chakraborty DA, Pal A (2011) Proteomic analysis of salicylic acid induced resistance to Mungbean Yellow Mosaic India Virus in Vigna mungo. J Proteom 74:337–349. doi: 10.1016/j.jprot.2010.11.012 CrossRefGoogle Scholar
  90. Leon-Reyes A, Spoel SH, De Lang ES, Abe H, Kobayashi M, Tsuda S, Millenaar FF, Welschen RAM, Ritsema T, Pieterse CMJ (2009) Ethylene modulates the role of nonexpressor of pathogenesis-related genes1 in cross talk between salicylate and jasmonate signaling. Plant Physiol 149:1797–1809. doi: 10.1104/pp.108.133926 CrossRefGoogle Scholar
  91. Leshem Y, Wills RBH, Ku VV (1998) Evidence for the function of the free radical gas, nitric oxide (NO), as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Biochem 36:825–833. doi: 10.1016/S0981-9428(99)80020-5 CrossRefGoogle Scholar
  92. Li X, Schuler MA, Berenbaum MR (2002) Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature 419:712–715. doi: 10.1038/nature01003 CrossRefGoogle Scholar
  93. Lipton SA, Yun-Beom CH, Pan Z-H, Le SZ, Vincent Chen H-S, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632. doi: 10.1038/364626a0 CrossRefGoogle Scholar
  94. Loake G, Grant M (2007) Salicylic acid in plant defence-the players and protagonists. Curr Opin Plant Biol 10:466–472. doi: 10.1016/j.pbi.2007.08.008 CrossRefGoogle Scholar
  95. Lopez-Orenes A, Martínez-Perez A, Calderon AA, Ferrer MA (2014) Pb-induced responses in Zygophyllum fabago plants are organ-dependent and modulated by salicylic acid. Plant Physiol Biochem 84:57–66. doi: 10.1016/j.plaphy.2014.09.003 CrossRefGoogle Scholar
  96. Ma JF (2007) Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. Int Rev Cytol 264:225–252. doi: 10.1016/S0074-7696(07)64005-4 CrossRefGoogle Scholar
  97. Mabood F, Smith D (2007) The role of salicylates in Rhizobium-legume symbiosis and abiotic stresses in higher plants. In: Hayat S, Ahmad A (eds) Salicylic acid, a plant hormone. Springer, Dordrechts, pp 151–162. doi: 10.1007/1-4020-5184-0_6 CrossRefGoogle Scholar
  98. Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J (2006) Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant Microbe Intearact 19:123–129. doi: 10.1094/MPMI-19-0123 CrossRefGoogle Scholar
  99. Malamy J, Carr JP, Klessig DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002–1004. doi: 10.1126/science.250.4983.1002 CrossRefGoogle Scholar
  100. Malar S, Vikram SS, Favas PJ, Perumal V (2014) Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot Stud 55(54):1–11. doi: 10.1186/s40529-014-0054-6 CrossRefGoogle Scholar
  101. Manaa A, Gharbi E, Mimouni H, Wasti S, Aschi-Smiti S, Lutts S, Ahmed HB (2014) Simultaneous application of salicylic acid and calcium improves salt tolerance in two contrasting tomato (Solanum lycopersicum) cultivars. S Afr J Bot 95:32–39. doi: 10.1016/j.sajb.2014.07.015 CrossRefGoogle Scholar
  102. Mandal S, Mallick N, Mitra A (2009) Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiol Biochem 47:642–649. doi: 10.1016/j.plaphy.2009.03.001 CrossRefGoogle Scholar
  103. Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43. doi: 10.1046/j.1469-8137.2002.00363.x CrossRefGoogle Scholar
  104. Mendoza-Cozatl DG, Moreno-Sanchez R (2005) Cd2+ transport and storage in the chloro-plast of Euglena gracilis. Biochim Biophys Acta 1706:88–97. doi: 10.1016/j.bbabio.2004.09.010 CrossRefGoogle Scholar
  105. Metraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, BlumW Inverardi B (1990) Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250:1004–1006. doi: 10.1126/science.250.4983.1004 CrossRefGoogle Scholar
  106. Moreno FN, Anderson CWN, Stewart RB, Robinson BH (2008) Phytofiltration of mercury-contaminated water: volatilisation and plant-accumulation aspects. Environ Exp Bot 62:78–85. doi: 10.1016/j.envexpbot.2007.07.007 CrossRefGoogle Scholar
  107. Mostofa MG, Fujita M (2013) Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology 22:959–973. doi: 10.1007/s10646-013-1073-x CrossRefGoogle Scholar
  108. Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell Environ 25:239–250. doi: 10.1046/j.0016-8025.2001.00808.x CrossRefGoogle Scholar
  109. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663. doi: 10.1111/j.1469-8137.2005.01487.x CrossRefGoogle Scholar
  110. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439. doi: 10.1126/science.aae0382 CrossRefGoogle Scholar
  111. Navarro L, Bari R, Achard P, Lison P, Nemri A et al (2008) DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol 18:650–655. doi: 10.1016/j.cub.2008.03.060 CrossRefGoogle Scholar
  112. Nazar R, Iqbal N, Syeed S, Khan NA (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mung bean cultivars. J Plant Physiol 168:807–815. doi: 10.1016/j.jplph.2010.11.001 CrossRefGoogle Scholar
  113. Odjegba VJ (2012) Exogenous salicylic acid alleviates arsenic toxicity in Arabidopsis thaliana. Indian J Innov Dev 1(7):515–527Google Scholar
  114. Pál M, Horváth E, Janda T, Páldi E, Szalai G (2006) Physiological changes and defense mechanisms induced by cadmium stress in maize. J Plant Nutr Soil Sci 169:239–246. doi: 10.1002/jpln.200520573 CrossRefGoogle Scholar
  115. Pandey P, Srivastava RK, Dubey RS (2013) Salicylic acid alleviates aluminum toxicity in rice seedlings better than magnesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense. Ecotoxicology 22:656–670. doi: 10.1007/s10646-013-1058-9 CrossRefGoogle Scholar
  116. Parashar A, Yusuf M, Fariduddin Q, Ahmad A (2014) Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese. Int J Biol Macromol 70:551–558. doi: 10.1016/j.ijbiomac.2014.07.014 CrossRefGoogle Scholar
  117. Pasquer F, Isidore E, Zarn J, Keller B (2005) Specific patterns of changes in wheat gene expression after treatment with three antifungal compounds. Plant Mol Biol 57:693–707. doi: 10.1007/s11103-005-1728-y CrossRefGoogle Scholar
  118. Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66:379–422. doi: 10.1007/BF02868923 CrossRefGoogle Scholar
  119. Peng H, Li S, Wang L, Li Y, Li Y, Zhang C, Hou X (2013) Turnip mosaic virus induces expression of the LRR II subfamily genes and regulates the salicylic acid signaling pathway in non-heading Chinese cabbage. Physiol Mol Plant Pathol 82:64–72. doi: 10.1007/BF02868923 CrossRefGoogle Scholar
  120. Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torresdey J (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41:1665–1677. doi: 10.1016/j.biocel.2009.03.005 CrossRefGoogle Scholar
  121. Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548. doi: 10.1046/j.1365-313X.2002.01442.x CrossRefGoogle Scholar
  122. Popova LP, Maslenkova LT, Yordanova RY, Ivanova AP, Krantev AP, Szalai G, Janda T (2009) Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem 47:224–231. doi: 10.1016/j.plaphy.2008.11.007 CrossRefGoogle Scholar
  123. Qin QZ, Tian SP, Xu Y, Wan YK (2003) Enhancement of biocontrol efficacy of antagonistic yeasts by salicylic acid in sweet cherry fruit. Physiol Mol Plant Pathol 62:147–154. doi: 10.1016/S0885-5765(03)00046-8 CrossRefGoogle Scholar
  124. Radwan DEM, Fayez KA, Mahmoud SY, Hamad A, Lu G (2007) Physiological and metabolic changes of Cucurbita pepo leaves in response to zucchini yellow mosaic virus (ZYMV) infection and salicylic acid treatments. Plant Physiol Biochem 45:480–489. doi: 10.1016/j.plaphy.2007.03.002 CrossRefGoogle Scholar
  125. Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D (2006) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141:910–923. doi: 10.1104/pp.106.082057 CrossRefGoogle Scholar
  126. Rasmussen JB, Hammerschmidt R, Zook MN (1991) Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv. Syringae. Plant Physiol 97:1342–1347. doi: 10.1104/pp.97.4.1342 CrossRefGoogle Scholar
  127. Robert-Seilaniantz A, Navarro L, Bari R, Jones JDG (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10:372–379. doi: 10.1016/j.pbi.2007.06.003 CrossRefGoogle Scholar
  128. Roy S, Labelle S, Mehta P et al (2005) Phytoremediation of heavy metal and PAH-contaminated brownfield sites. Plant Soil 272:277–290. doi: 10.1007/s11104-004-5295-9 CrossRefGoogle Scholar
  129. Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819. doi: 10.1104/pp.111.187468 CrossRefGoogle Scholar
  130. Saidi I, Ayouni M, Dhieb A, Chtourou Y, Chaïbi W, Djebali W (2013) Oxidative damages induced by short-term exposure to cadmium in bean plants: protective role of salicylic acid. S Afr J Bot 85:32–38. doi: 10.1016/j.sajb.2012.12.002 CrossRefGoogle Scholar
  131. Saikia R, Singh T, Kumar R, Srivastava J, Srivastava AK, Singh K, Arora DK (2003) Role of salicylic acid in systemic resistance induced by Pseudomonas fluorescens against Fusarium oxysporum f. sp. ciceri in chickpea. Microbiol Res 158:203–213. doi: 10.1078/0944-5013-00202 CrossRefGoogle Scholar
  132. Sánchez G, Gerhardt N, Siciliano F, Vojnov A, Malcuit I, Marano MR (2010) Salicylic acid is involved in the Nb-mediated defense responses to potato virus X in Solanum tuberosum. Mol Plant Microbe Interact 23(4):394–405. doi: 10.1094/MPMI-23-4-0394 CrossRefGoogle Scholar
  133. Sandalio LM, Rodríguez-Serrano M, Del-Río LA, Romero-Puertas MC (2009) Reactive oxygen species and signaling in cadmium toxicity. In: del Rio LA, Puppo A (eds) Reactive oxygen species in plant. Springer, Berlin, pp 175–189. doi: 10.1007/978-3-642-00390-5_11 CrossRefGoogle Scholar
  134. Schroeder JI et al (2013) Using membrane transporters to improve crops for sustainable food production. Nature 497:60–66. doi: 10.1038/nature11909 CrossRefGoogle Scholar
  135. Schuler G, Mithofer A, Baldwin IT et al (2004) Coronalon: a powerful tool in plant stress physiology. FEBS Lett 563:17–22. doi: 10.1016/S0014-5793(04)00239-X CrossRefGoogle Scholar
  136. Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365. doi: 10.1093/jexbot/53.372.1351 CrossRefGoogle Scholar
  137. Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53:257–277. doi: 10.1134/S1021443706020178 CrossRefGoogle Scholar
  138. Shah J, Klessig DF (1999) Salicylic acid: signal perception and transduction. In: Hooykaas PPJ, Hall MA, Libbenga KR (eds) Biochemistry and molecular biology of plant hormones. Elsevier, Amsterdam, pp 513–541. doi: 10.1016/S0167-7306(08)60503-7 CrossRefGoogle Scholar
  139. Shahida M, Pinelli E, Dumata C (2012) Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater 219(220):1–12. doi: 10.1016/j.jhazmat.2012.01.060 CrossRefGoogle Scholar
  140. Sharma SS, Dietz K (2008) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:1360–1385. doi: 10.1016/j.tplants.2008.10.007 CrossRefGoogle Scholar
  141. Sheldon AR, Menzies NW (2005) The effect of copper toxicity on the growth and root morphology of Rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant Soil 278:341–349. doi: 10.1007/s11104-005-8815-3 CrossRefGoogle Scholar
  142. Shi GR, Cai QS (2008) Photosynthetic and anatomic responses of peanut leaves to cadmium stress. Photosynthetica 46:627–630. doi: 10.1007/s11099-008-0107-8 CrossRefGoogle Scholar
  143. Shi Q, Zhua Z (2008) Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environ Exp Bot 63:317–326. doi: 10.1016/j.envexpbot.2007.11.003 CrossRefGoogle Scholar
  144. Shi Q, Zhua Z, Xua M, Qian Q, Yu J (2006) Effect of excess manganese on the antioxidant system in Cucumis sativus L. under two light intensities. Environ Exp Bot 58:197–205. doi: 10.1016/j.envexpbot.2005.08.005 CrossRefGoogle Scholar
  145. Shi G, Liu C, Cai Q, Liu Q, Hou C (2010) Cadmium accumulation and tolerance of two safflower cultivars in relation to photosynthesis and antioxidantive enzymes. Bull Environ Contam Toxicol 85:256–263. doi: 10.1007/s00128-010-0067-0 CrossRefGoogle Scholar
  146. Siddiqui MH, Al-Whaibi MH, Ali HM, Sakran AM, Basalah MO, AlKhaishany MYY (2013) Mitigation of nickel stress by the exogenous application of salicylic acid and nitric oxide in wheat. Aust J Crop Sci 7(11):1780–1788Google Scholar
  147. Sillero JC, Rojas-Molina MM, Avila CM, Rubiales D (2012) Induction of systemic acquired resistance against rust, ascochyta blight and broomrape in faba bean by exogenous application of salicylic acid and benzothiadiazole. Crop Prot 34:65–69. doi: 10.1016/j.cropro.2011.12.001 CrossRefGoogle Scholar
  148. Singh A, Srivastava AK, Singh AK (2011) Exogenous application of salicylic acid to alleviate the toxic effects of insecticides in Vicia faba L. Environ Toxicol 28(12):666–672. doi: 10.1002/tox.20745 CrossRefGoogle Scholar
  149. Smith JA, Hammerschmidt R, Fulbright DW (1991) Rapid induction of systemic resistance in cucumber by Pseudomonas syringae pv. syringae. Physiol Mol Plant Pathol 38:223–235. doi: 10.1016/S0885-5765(05)80126-2 CrossRefGoogle Scholar
  150. Smith SE, Christophersen HM, Pope S, Smith FA (2010) Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant Soil 327:1–21. doi: 10.1007/s11104-009-0089-8 CrossRefGoogle Scholar
  151. Smitha TE, Grattana SR, Grieveb CM, Possb JA, Suarezb DL (2010) Salinity’s influence on boron toxicity in broccoli: II. Impacts on boron uptake, uptake mechanisms and tissue ion relations. Agric Water Manag 97(6):783–791. doi: 10.1016/j.agwat.2010.01.015 CrossRefGoogle Scholar
  152. Song F, Goodman RM (2001) Activity of nitric oxide is dependent on, but is partially required for function of, salicylic acid in the signaling pathway in tobacco systemic acquired resistance. Mol Plant Microbe Interact 14:1458–1462. doi: 10.1094/MPMI.2001.14.12.1458 CrossRefGoogle Scholar
  153. Sood N, Sohal BS, Lore JS (2013) Foliar application of benzothiadiazole and salicylic acid to combat sheath blight disease of rice. Rice Sci 20(5):349–355. doi: 10.1016/S1672-6308(13)60155-9 CrossRefGoogle Scholar
  154. Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89–100. doi: 10.1038/nri3141 CrossRefGoogle Scholar
  155. Stoeva N, Bineva T (2003) Oxidative changes and photosynthesis in Oat plants grown in As-contaminated soil. Bulg J Plant Physiol 29:87–95Google Scholar
  156. Surapu V, Ediga A, Meriga B (2014) Salicylic acid alleviates aluminum toxicity in tomato seedlings (Lycopersicum esculentum Mill.) through activation of antioxidant defense system and proline biosynthesis. Adv Biosci Biotechnol 5:777–789. doi: 10.1590/S1677-04202012000200004 CrossRefGoogle Scholar
  157. Tamás L, Mistrík I, Alemayehu A, Zelinová V, Bočová B, Huttová J (2015) Salicylic acid alleviates cadmium-induced stress responses through the inhibition of Cd-induced auxin-mediated reactive oxygen species production in barley root tips. J Plant Physiol 173:1–8. doi: 10.1016/j.jplph.2014.08.018 CrossRefGoogle Scholar
  158. Thaler JS (1999) Jasmonate-inducible plant defenses cause increased parasitism of herbivores. Nature 399:686–688. doi: 10.1038/21420 CrossRefGoogle Scholar
  159. Tombuloglua G, Tombuloglua H, Sakcalic MS, Unverd T (2015) High-throughput transcriptome analysis of barley (Hordeum vulgare) exposed to excessive boron. Gene 557(1):71–81. doi: 10.1016/j.gene.2014.12.012 CrossRefGoogle Scholar
  160. Tomonori K, Takuya H, Francois B (2013) Signaling role of salicylic acid in abiotic stress responses in plants. In: Hayat S, Aqil A, Nasir AM (eds) Salicylic acid. Springer, Dordrecht, pp 249–276. doi: 10.1007/978-94-007-6428-6_11 CrossRefGoogle Scholar
  161. Vicente MR, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62(10):3321–3338. doi: 10.1093/jxb/err031 CrossRefGoogle Scholar
  162. Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206. doi: 10.1146/annurev.phyto.050908.135202 CrossRefGoogle Scholar
  163. Volland S, Bayer E, Baumgartner V, Andosch A, Lütz C, Sima E, Lütz-Meindl U (2014) Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions. J Plant Physiol 171:154–163. doi: 10.1016/j.jplph.2013.10.002 CrossRefGoogle Scholar
  164. Wally O, Jayaraj J, Punja ZK (2009) Broad-spectrum disease resistance tonecrotrophic and biotrophic pathogens in transgenic carrots (Daucus carota L.) expressing an Arabidopsis NPR1 gene. Planta 231:131–141. doi: 10.1007/s00425-009-1031-2 CrossRefGoogle Scholar
  165. Wang Y, Liu J (2012) Exogenous treatment with salicylic acid attenuates occurrence of citrus canker in susceptible navel orange (Citrus sinensis Osbeck). J Plant Physiol 169:1143–1149. doi: 10.1016/j.jplph.2012.03.018 CrossRefGoogle Scholar
  166. Wang D, Weaver ND, Kesarwani M, Dong X (2005) Induction of protein secretory pathway is required for systemic acquired resistance. Science 308:1036–1040. doi: 10.1126/science.1108791 CrossRefGoogle Scholar
  167. Wang D, Pajerowska-Mukhtar K, Hendrickson Culler A, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790. doi: 10.1016/j.cub.2007.09.025 CrossRefGoogle Scholar
  168. Wang H, Feng T, Peng X, Yan M, Tang X (2009) Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid. Ecotoxicol Environ Saf 72:1354–1362. doi: 10.1016/j.ecoenv.2009.03.008 CrossRefGoogle Scholar
  169. Wang C, Zhang S, Wang P, Hou J, Qian J, Ao Y, Lu J, Li L (2011) Salicylic acid involved in the regulation of nutrient elements uptake and oxidative stress in Vallisneria natans (Lour.) Hara under Pb stress. Chemosphere 84:136–142. doi: 10.1016/j.chemosphere.2011.02.026 CrossRefGoogle Scholar
  170. Wendehenne D, Durner J, Klessig DF (2004) Nitric oxide: a new player in plant signaling and defence responses. Curr Opin Plant Biol 7:449–455. doi: 10.1007/s11738-004-0037-4 CrossRefGoogle Scholar
  171. Woolhouse HW (1983) Toxicity and tolerance in the responses of plants to metals. In: Lange OL et al (eds) Encyclopedia of plant physiology. Springer, New York, pp 245–300. doi: 10.1007/978-3-642-68153-0_8 CrossRefGoogle Scholar
  172. Xie Z, Zhang ZL, Hanzlik S, Cook E, Shen QJ (2007) Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid inducible WRKY gene. Plant Mol Biol 64:293–303. doi: 10.1007/s11103-007-9152-0 CrossRefGoogle Scholar
  173. Xu X, Tian S (2008) Salicylic acid alleviated pathogen-induced oxidative stress in harvested sweet cherry fruit. Postharvest Biol Technol 4(9):379–385. doi: 10.1016/j.postharvbio.2008.02.003 CrossRefGoogle Scholar
  174. Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92. doi: 10.1016/S0014-5793(00)01203-5 CrossRefGoogle Scholar
  175. Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4:128–129. doi: 10.1016/S1360-1385(99)01393-X CrossRefGoogle Scholar
  176. Yang Z, Cao S, Cai Y, Zheng Y (2011) Combination of salicylic acid and ultrasound to control postharvest blue mold caused by Penicillium expansum in peach fruit. Innov Food Sci Emerg Technol 12:310–314. doi: 10.1016/j.ifset.2011.04.010 CrossRefGoogle Scholar
  177. Yao H, Tian S (2005) Effects of pre- and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biol Technol 35:253–262. doi: 10.1016/j.postharvbio.2004.09.001 CrossRefGoogle Scholar
  178. Young LS, Damodaran PN, Roh KS (2014) Influence of salicylic acid on rubisco and rubisco activase in tobacco plant grown under sodium chloride in vitro. Saudi J Biol Sci 21:417–426. doi: 10.1016/j.sjbs.2014.04.002 CrossRefGoogle Scholar
  179. Zainuri Joyce DC, Wearing AH, Coates L, Terry L (2001) Effects of phosphonate and salicylic acid treatments on anthracnose disease development and ripening of ‘Kensington Pride’ mango fruit. Aust J Exp Agric 41:805–813. doi: 10.1071/EA99104 CrossRefGoogle Scholar
  180. Zeng KF, Cao JK, Jiang WB (2006) Enhancing disease resistance in harvested mango (Mangifera indica L. cv. Matisu) fruit by salicylic acid. J Sci Food Agric 86:694–698. doi: 10.1002/jsfa.2397 CrossRefGoogle Scholar
  181. Zhang LP, Mehta SK, Liu ZP, Yang ZM (2008) Copper-induced proline synthesis is associated with nitric oxide generation in Chlamydomonas reinhardtii. Plant Cell Physiol 49:411–419. doi: 10.1093/pcp/pcn017 CrossRefGoogle Scholar
  182. Zhang Y, Xu S, Ding P, Wang D, Cheng YT, He J, Gao M, Xu F, Li Y, Zhu Z, Li X, Zhang Y (2010) Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proc Natl Acad Sci USA 107(42):18220–18225. doi: 10.1073/pnas.1005225107 CrossRefGoogle Scholar
  183. Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9. doi: 10.1016/j.jinorgbio.2006.05.011 CrossRefGoogle Scholar
  184. Zhou ZS, Guo K, Elbaz AA, Yang ZM (2009) Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ Exp Bot 65:27–34. doi: 10.1016/j.envexpbot.2008.06.001 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Abdul Basit Wani
    • 1
  • Hemlata Chadar
    • 2
  • Abdul Haleem Wani
    • 3
  • Simranjeet Singh
    • 4
  • Niraj Upadhyay
    • 2
    Email author
  1. 1.Department of ChemistryLovely Professional UniversityPhagwaraIndia
  2. 2.Department of ChemistryDr. Harisingh Gour UniversitySagarIndia
  3. 3.Department of ChemistrySri Pratab CollegeSrinagarIndia
  4. 4.Department of BiotechnologyLovely Professional UniversityPhagwaraIndia

Personalised recommendations