Environmental Chemistry Letters

, Volume 14, Issue 1, pp 1–14 | Cite as

Perspectives and applications of nanotechnology in water treatment

  • Sunandan Baruah
  • Muhammad Najam Khan
  • Joydeep Dutta


Industrialization and excessive use of pesticides for boosting agricultural production have adversely affected the ecosystem, polluting natural water reserves. Remediation of contaminated water has been an area of concern with numerous techniques being applied to improve the quality of naturally available water to the level suitable for human consumption. Most of these methods, however, generate by-products that are sometimes toxic. Heterogenous photocatalysis using metal oxide nanostructures for water purification is an attractive option because no harmful by-products are created. A discussion on possible methods to engineer metal oxides for visible light photocatalysis is included to highlight the use of solar energy for water purification. Multifunctional photocatalytic membranes are considered advantageous over freely suspended nanoparticles due to the ease of its removal from the purified water. An overview of water remediation techniques is presented, highlighting innovations through nanotechnology for possible addressing of problems associated with current techniques.


Contamination Water Purification Photocatalysis Nanofiltration 


  1. Adams LK et al (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40(19):3527–3532CrossRefGoogle Scholar
  2. Aderhold D et al (1996) The removal of heavy-metal ions by seaweeds and their derivatives. Bioresour Technol 58(1):1–6CrossRefGoogle Scholar
  3. Aguedach A et al (2005) Photocatalytic degradation of azo-dyes reactive black 5 and reactive yellow 145 in water over a newly deposited titanium dioxide. Appl Catal B 57(1):55–62CrossRefGoogle Scholar
  4. Ajmal M et al (2000) Adsorption studies on Citrus reticulata (fruit peel of orange): removal and recovery of Ni(II) from electroplating wastewater. J Hazard Mater 79(1–2):117–131CrossRefGoogle Scholar
  5. Allen SJ et al (1998) The production and characterisation of activated carbons: a review. Dev Chem Eng Miner Process 6(5):231–261CrossRefGoogle Scholar
  6. Anirudhan TS et al (2011) Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J Environ Sci 23(12):1989–1998CrossRefGoogle Scholar
  7. Apiratikul R et al (2008) Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Bioresour Technol 99(8):2766–2777CrossRefGoogle Scholar
  8. Araújo MM et al (1997) Trivalent chromium sorption on alginate beads. Int Biodeterior Biodegradation 40(1):63–74CrossRefGoogle Scholar
  9. Argun ME et al (2008) A new approach to modification of natural adsorbent for heavy metal adsorption. Bioresour Technol 99(7):2516–2527CrossRefGoogle Scholar
  10. Ayoub GM et al (2001) Heavy metal removal by coagulation with seawater liquid bittern. J Environ Eng 127(3):196–207CrossRefGoogle Scholar
  11. Babel S et al (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97(1–3):219–243CrossRefGoogle Scholar
  12. Bablon G (1991) Practical application of ozone: principles and case studies. In: Ozone in water treatment application and engineering. AWWARF, Lewis Publishers, New York, pp 133–316Google Scholar
  13. Baes AU et al (1996) Ion exchange and adsorption of some heavy metals in a modified coconut coir cation exchanger. Water Sci Technol 34(11):193–200CrossRefGoogle Scholar
  14. Bailey SE et al (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33(11):2469–2479CrossRefGoogle Scholar
  15. Baker MN et al (1981) The quest for pure water. American Water Works Association, DenverGoogle Scholar
  16. Bandala ER et al (2002) Solar photocatalytic degradation of Aldrin. Catal Today 76(2–4):189–199CrossRefGoogle Scholar
  17. Banerjee S et al (2006) Physics and chemistry of photocatalytic titanium dioxide: visualization of bactericidal activity using atomic force microscopy. Curr Sci 90(10):1378–1383Google Scholar
  18. Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377CrossRefGoogle Scholar
  19. Baruah S et al (2008a) Visible light photocatalysis by tailoring crystal defects in zinc oxide nanostructures. Nano 3(5):399–407CrossRefGoogle Scholar
  20. Baruah S et al (2008b) Growth of ZnO nanowires on nonwoven polyethylene fibers. Sci Technol Adv Mater 9(2):025009CrossRefGoogle Scholar
  21. Baruah S et al (2009a) Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10:013001CrossRefGoogle Scholar
  22. Baruah S et al (2009b) Nanotechnology applications in pollution sensing and degradation in agriculture. Environ Chem Lett 7(3):191–204CrossRefGoogle Scholar
  23. Baruah S et al (2009c) Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7:1–14CrossRefGoogle Scholar
  24. Baruah S et al (2009d) Nanoparticle applications for environmental control and remediation. In: Chaughule RS, Ramanujan RV (eds) Nanoparticles: synthesis, characterization and applications. American Scientific Publishers, Valencia, pp 195–216Google Scholar
  25. Baruah S et al (2009e) Photo-reactivity of ZnO nanoparticles in visible light: effect of surface states on electron transfer reaction. J Appl Phys 105:074308CrossRefGoogle Scholar
  26. Baruah S et al (2010a) Photocatalytic paper using zinc oxide nanorods. Sci Technol Adv Mater 11(5):055002CrossRefGoogle Scholar
  27. Baruah S et al (2010b) Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods. Beilstein J Nanotechnol 1:14–20CrossRefGoogle Scholar
  28. Baruah S et al (2011) Zinc stannate nanostructures: hydrothermal synthesis. Sci Technol Adv Mater 12(1):013004CrossRefGoogle Scholar
  29. Baruah S et al (2012) Development of a visible light active photocatalytic portable water purification unit using ZnO nanorods. Catal Sci Technol 2(5):918–921CrossRefGoogle Scholar
  30. Baruah S et al (2015) Nanotechnology in water treatment. In: Lichtfouse E, Schwarzbaur J, Robert D (eds) Pollutants in buildings, water and living organisms. Environmental chemistry for a sustainable world, vol 7. Springer International Publishing, Switzerland, pp 51–84Google Scholar
  31. Benabbou AK et al (2007) Photocatalytic inactivation of Escherichia coli: effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation. Appl Catal B Environ 76(3–4):257–263CrossRefGoogle Scholar
  32. Bhattacharyya KG et al (2008) Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interface Sci 140(2):114–131CrossRefGoogle Scholar
  33. Bianco-Prevot A et al (2001) Continuous monitoring of photocatalytic treatments by flow injection. Degradation of dicamba in aqueous TiO2 dispersions. Chemosphere 44(2):249–255CrossRefGoogle Scholar
  34. Bolton JR (1999) UV application handbook. Bolton Photosciences Inc, EdmontonGoogle Scholar
  35. Bose P et al (2002) Critical evaluation of treatment strategies involving adsorption and chelation for wastewater containing copper, zinc and cyanide. Adv Environ Res 7(1):179–195CrossRefGoogle Scholar
  36. Brame J et al (2011) Nanotechnology-enabled water treatment and reuse: emerging opportunities and challenges for developing countries. Trends Food Sci Technol 22(11):618–624CrossRefGoogle Scholar
  37. Bukhari Z et al (1999) Medium-pressure UV for oocyst Inactivation. J AWWA 91(3):86–94Google Scholar
  38. Burch JD et al (1998) Water disinfection for developing countries and potential for solar thermal pasteurization. Sol Energy 64(1–3):87–97CrossRefGoogle Scholar
  39. Camel V et al (1998) The use of ozone and associated oxidation processes in drinking water treatment. Water Res 32(11):3208–3222CrossRefGoogle Scholar
  40. Cantor KP et al (1998) Drinking water source and chlorination byproducts I. Risk of bladder cancer. Epidemiology 9(1):21–28CrossRefGoogle Scholar
  41. Cantor KP et al (1999) Drinking water source and chlorination by products in Iowa. III. Risk of brain cancer. Am J Epidemiol 150(6):552–560CrossRefGoogle Scholar
  42. Chang C et al (1994) Adsorption kinetics of cadmium chelates on activated carbon. J Hazard Mater 38(3):439–451CrossRefGoogle Scholar
  43. Chatterjee D et al (2005) Visible light induced photocatalytic degradation of organic pollutants. J Photochem Photobiol C Photochem Rev 6(2–3):186–205CrossRefGoogle Scholar
  44. Chen JQ et al (2006) Study on degradation of methyl orange using pelagite as photocatalyst. J Hazard Mater 138(1):182–186CrossRefGoogle Scholar
  45. Cho M et al (2004) Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res 38(4):1069–1077CrossRefGoogle Scholar
  46. Cochrane EL et al (2006) A comparison of low-cost biosorbents and commercial sorbents for the removal of copper from aqueous media. J Hazard Mater 137(1):198–206CrossRefGoogle Scholar
  47. Corapcioglu MO et al (1987) The adsorption of heavy metals onto hydrous activated carbon. Water Res 21(9):1031–1044CrossRefGoogle Scholar
  48. DeMers LD et al (1992) Alternative disinfection technologies for small drinking water systems. AWWARF and AWWA, DenverGoogle Scholar
  49. Di Natale F et al (2007) Removal of chromium ions form aqueous solutions by adsorption on activated carbon and char. J Hazard Mater 145(3):381–390CrossRefGoogle Scholar
  50. Domingue EL (1988) Effects of three oxidizing biocides on Legionella pneumophila, serogroup 1. Appl Environ Microbiol 40:11–30Google Scholar
  51. Eddy M (2004) Waste water engineering: treatment and reuse. McGraw Hill, New YorkGoogle Scholar
  52. Ellis KV (1991) Water disinfection: a review with some consideration of the requirements of the third world. Crit Rev Environ Control 20(5–6):341–407CrossRefGoogle Scholar
  53. EPA (1999) Alternative disinfectants and oxidants. EPA 3–52Google Scholar
  54. Erkan A et al (2006) Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films. J Photochem Photobiol A Chem 184(3):313–321CrossRefGoogle Scholar
  55. Evgenidou E et al (2005) Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts. Appl Catal B Environ 59(1–2):81–89CrossRefGoogle Scholar
  56. Farooq S et al (1977) The effect of ozone bubbles on disinfection. Water Ozone Sci Eng 9(2):233Google Scholar
  57. Foletto EL et al (2010) Hydrothermal preparation of Zn 2SnO 4 nanocrystals and photocatalytic degradation of a leather dye. J Appl Electrochem 40(1):59–63CrossRefGoogle Scholar
  58. Fu F et al (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418CrossRefGoogle Scholar
  59. Fujishima A et al (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1(1):1–21CrossRefGoogle Scholar
  60. Gadgil A (1997) Field-testing UV disinfection of drinking water. Water Engineering Development Center, University of Loughborough, Loughborough LBNL 40360 Google Scholar
  61. Gaya UI et al (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C Photochem Rev 9(1):1–12CrossRefGoogle Scholar
  62. Gelover S et al (2006) A practical demonstration of water disinfection using TiO2 films and sunlight. Water Res 40(17):3274–3280CrossRefGoogle Scholar
  63. Glaze WH et al (1988) Advanced oxidation processes for treating groundwater contaminated with TCE and PCE: laboratory studies. J AWWA 88(5):57–63Google Scholar
  64. Gombotz WR et al (2012) Protein release from alginate matrices. Adv Drug Deliv Rev 64:194–205CrossRefGoogle Scholar
  65. Gopal K et al (2007) Chlorination byproducts, their toxicodynamics and removal from drinking water. J Hazard Mater 140(1–2):1–6CrossRefGoogle Scholar
  66. Grant DC et al (1987) Removal of radioactive contaminants from West Valley waste streams using natural zeolites. Environ Prog 6(2):104–109CrossRefGoogle Scholar
  67. Gupta VK et al (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manag 90(8):2313–2342CrossRefGoogle Scholar
  68. Gyürék LL et al (1999) Ozone inactivation kinetics of Cryptosporidium in phosphate buffer. J Environ Eng ASCE 125(10):913–924CrossRefGoogle Scholar
  69. Hebert A et al (2010) Innovative method for prioritizing emerging disinfection by-products (DBPs) in drinking water on the basis of their potential impact on public health. Water Res 44(10):3147–3165CrossRefGoogle Scholar
  70. Herrmann JM et al (2000) Photocatalytic degradation of pesticides in agricultural used waters. C R Acad Sci Ser IIc Chem 3(6):417–422Google Scholar
  71. Hijnen WAM et al (2006) Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review. Water Res 40(1):3–22CrossRefGoogle Scholar
  72. Hildesheim ME et al (1998) Drinking water source and chlorination byproducts II. Risk of colon and rectal cancers. Epidemiology 9(1):29–35CrossRefGoogle Scholar
  73. Hillie T et al (2007) Nanotechnology and the challenge of clean water. Nat Nanotechnol 2(11):663–664CrossRefGoogle Scholar
  74. Hirano S (2009) A current overview of health effect research on nanoparticles. Environ Health Prev Med 14(4):223–225CrossRefGoogle Scholar
  75. Hoehn RC et al (1996) AWWA water quality technology conference. Boston, MA, Nov 17–21Google Scholar
  76. Hoigné J et al (1976) The role of hydroxyl radical reactions in ozonation processes in aqueous solutions. Water Res 10(5):377–386CrossRefGoogle Scholar
  77. Holan ZR et al (1993) Biosorption of cadmium by biomass of marine algae. Biotechnol Bioeng 41(8):819–825CrossRefGoogle Scholar
  78. Hornyak GL et al (2008) Introduction to nanoscience. CRC Press, Boca RatonGoogle Scholar
  79. Huang CP et al (1977) The removal of chromium(VI) from dilute aqueous solution by activated carbon. Water Res 11(8):673–679CrossRefGoogle Scholar
  80. Huang CP et al (1984) The removal of mercury(II) from dilute aqueous solution by activated carbon. Water Res 18(1):37–46CrossRefGoogle Scholar
  81. Huang J et al (1997) Disinfection effect of chlorine dioxide on bacteria in water. Water Res 31(3):607–613CrossRefGoogle Scholar
  82. Huang N et al (1998) Photochemical disinfection of Escherichia coli with a TiO2 colloid solution and a self-assembled TiO2 thin film. Supramol Sci 5(5–6):559–564CrossRefGoogle Scholar
  83. Huang J et al (2012) Size-controlled synthesis of porous ZnSnO 3 cubes and their gas-sensing and photocatalysis properties. Sens Actuators B Chem 171–172:572–579CrossRefGoogle Scholar
  84. Ibanez JA et al (2003) Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae: comparative study with other Gram (-) bacteria. J Photochem Photobiol A Chem 157(1):81–85CrossRefGoogle Scholar
  85. Karanis P et al (1992) UV sensitivity of protozoan parasites. Aqua 41:95–100Google Scholar
  86. Katz J (1980) Ozone and chlorine dioxide technology for disinfection of drinking water. Noyes Data Corporation, Park RidgeGoogle Scholar
  87. Kelesoglu S (2007) Comparative adsorption studies of heavy metal ions on chitin and chitosan biopolymers. Master thesis, Graduate school of engineering and science, chemistry department. Izmir Institute of TechnologyGoogle Scholar
  88. Kinman RN (1975) Water and wastewater disinfection with ozone: a critical review. Crit Rev Environ Control 5:141–152CrossRefGoogle Scholar
  89. Kobya M (2004) Removal of Cr(VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: kinetic and equilibrium studies. Bioresou Technol 91(3):317–321CrossRefGoogle Scholar
  90. Kobya M et al (2005) Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour Technol 96(13):1518–1521CrossRefGoogle Scholar
  91. Koros WJ et al (1996) Terminology for membranes and membrane processes (IUPAC). Pure Appl Chem 86(7):1479–1489Google Scholar
  92. Krishna V et al (2008) Mechanism of enhanced photocatalysis with polyhydroxy fullerenes. Appl Catal B Environ 79(4):376–381CrossRefGoogle Scholar
  93. Kurniawan TA et al (2006a) Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci Total Environ 366(2–3):409–426CrossRefGoogle Scholar
  94. Kurniawan TA et al (2006b) Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118(1–2):83–98CrossRefGoogle Scholar
  95. Kurz A et al (2006) Strategies for novel transparent conducting sol-gel oxide coatings. Thin Solid Films 502(1–2):212–218CrossRefGoogle Scholar
  96. Lee CK et al (1995) Removal of chromium from aqueous solution. Bioresour Technol 54(2):183–189CrossRefGoogle Scholar
  97. Letterman RD (ed) (1999) Water quality and treatment. American Water Works Association and McGraw-Hill, New YorkGoogle Scholar
  98. Li Q et al (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602CrossRefGoogle Scholar
  99. Loge FJ et al (1999) Ultraviolet disinfection of secondary wastewater effluent: prediction of performance and design. Water Environ Res 68:900–916CrossRefGoogle Scholar
  100. Lonnen J et al (2005) Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water. Water Res 39(5):877–883CrossRefGoogle Scholar
  101. Lou X et al (2006) Hydrothermal synthesis, characterization and photocatalytic properties of Zn2SnO4 nanocrystal. Mater Sci Eng A 432(1–2):221–225CrossRefGoogle Scholar
  102. Lykins BW et al (1986) Using chlorine dioxide for trihalomethane control. J Am Water Works Assoc 78(6):88–93Google Scholar
  103. Mahalakshmi M et al (2007) Photocatalytic degradation of carbofuran using semiconductor oxides. J Hazard Mater 143(1–2):240–245CrossRefGoogle Scholar
  104. Mahmood MA et al (2011) Enhanced visible light photocatalysis by manganese doping or rapid crystallization with ZnO nanoparticles. Mater Chem Phys 30(1–2):531–535CrossRefGoogle Scholar
  105. Makhal A et al (2010) Role of resonance energy transfer in light harvesting of zinc oxide-based dye-sensitized solar cells. J Phys Chem C 114(23):10390–10395CrossRefGoogle Scholar
  106. Mamane H et al (2010) The use of an open channel, low pressure UV reactor for water treatment in low head recirculating aquaculture systems (LH-RAS). Aquac Eng 42(3):103–111CrossRefGoogle Scholar
  107. Marcucci M et al (2003) Membrane technologies applied to textile wastewater treatment. Ann N Y Acad Sci 984:53–64CrossRefGoogle Scholar
  108. Marshall WE et al (1999) Enhanced metal adsorption by soybean hulls modified with citric acid. Bioresour Technol 69(3):263–268CrossRefGoogle Scholar
  109. Medina-Ramon M et al (2005) Asthma, chronic bronchitis, and exposure to irritant agents in occupational domestic cleaning: a nested case–control study. Occup Environ Med 62(9):598–606CrossRefGoogle Scholar
  110. Ming DW et al (1987) Quantitative determination of clinoptilolite in soils by a cation-exchange capacity method. Clay Miner 35(6):463–468CrossRefGoogle Scholar
  111. Mohan D et al (2006) Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J Hazard Mater 137(2):762–811CrossRefGoogle Scholar
  112. Mohanty K et al (2006) Preparation and characterization of activated carbons from Sterculia alata nutshell by chemical activation with zinc chloride to remove phenol from wastewater. Adsorption 12(2):119–132CrossRefGoogle Scholar
  113. Najam Khan M et al (2014) Visible light photocatalysis of mixed phase zinc stannate/zinc oxide nanostructures precipitated at room temperature in aqueous media. Ceram Int 40(6):8743–8752CrossRefGoogle Scholar
  114. Najam Khan M et al (2015) Comparison of photocatalytic activity of zinc stannate particles and zinc stannate/zinc oxide composites for the removal of phenol from water, and a study on the effect of pH on photocatalytic efficiency. Mater Sci Semicond Process 36:124–133CrossRefGoogle Scholar
  115. Ngah WSW et al (2008) Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan–GLA beads and chitosan–alginate beads. Chem Eng J 143(1–3):62–72CrossRefGoogle Scholar
  116. Oller I et al (2006) Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale. J Hazard Mater 138(3):507–517CrossRefGoogle Scholar
  117. Ozaki H et al (2002) Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters. Desalination 144(1–3):287–294CrossRefGoogle Scholar
  118. Paajanen A et al (1997) Sorption of cobalt on activated carbons from aqueous solutions. Sep Sci Technol 32(1–4):813–826CrossRefGoogle Scholar
  119. Park HG et al (2004) Novel type of alginate gel-based adsorbents for heavy metal removal. J Chem Technol Biotechnol 79:1080–1083CrossRefGoogle Scholar
  120. Pasparakis G et al (2006) Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads. Int J Pharm 323(1–2):34–42CrossRefGoogle Scholar
  121. Pollard SJT et al (1992) Low-cost adsorbents for waste and wastewater treatment: a review. Sci Total Enviro 116(1–2):31–52CrossRefGoogle Scholar
  122. Qdais HA et al (2004) Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination 164(2):105–110CrossRefGoogle Scholar
  123. Qi L et al (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339(16):2693–2700CrossRefGoogle Scholar
  124. Rahman MA et al (2005) Photocatalysed degradation of two selected pesticide derivatives, dichlorvos and phosphamidon, in aqueous suspensions of titanium dioxide. Desalination 181(1–3):161–172CrossRefGoogle Scholar
  125. Ranganathan K (2000) Chromium removal by activated carbons prepared from Casurina equisetifolia leaves. Bioresour Technol 73(2):99–103CrossRefGoogle Scholar
  126. Rincon AG et al (2004) Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time. Appl Catal B Environ 49(2):99–112CrossRefGoogle Scholar
  127. Rouquerol F (1999) Adsorption by powders and porous solids. Academic Press, LondonGoogle Scholar
  128. Sadiq R et al (2004) Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review. Science of the Total Environment 321(1–3):21–46CrossRefGoogle Scholar
  129. Sapkota A et al (2011) Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water. Nanotechnology 22(21):215703CrossRefGoogle Scholar
  130. Sawyer NC et al (1994) Chemistry for environmental engineering. Graw Hill International Edition, SingaporeGoogle Scholar
  131. Semerjian L et al (2003) High-pH–magnesium coagulation–flocculation in wastewater treatment. Adv Environ Res 7(2):389–403CrossRefGoogle Scholar
  132. Sobsey MD (1989) Inactivation of health-related microorganisms in water by disinfection processes. Water Sci Technol 21(3):179–195Google Scholar
  133. Sondi I et al (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182CrossRefGoogle Scholar
  134. Stöcker M (2005) Gas phase catalysis by zeolites. Microporous and Mesoporous Mater 82(3):257–292CrossRefGoogle Scholar
  135. Sugunan A et al (2008) Pollution treatment, remediation, and sensing. In: Krug H (ed) Nanotechnology, vol 2. Wiley-VCH, Weinheim, p 125–146Google Scholar
  136. Tian Z et al (2012) Zinc stannate nanocubes and nanourchins with high photocatalytic activity for methyl orange and 2,5-DCP degradation. J Mater Chem 22(33):17210–17214CrossRefGoogle Scholar
  137. Tiravanti G et al (1997) Pretreatment of tannery wastewaters by an ion exchange process for Cr(III) removal and recovery. Water Sci Technol 36(2–3):197–207CrossRefGoogle Scholar
  138. Tran HH et al (1999) Comparison of chromatography and desiccant silica gels for the adsorption of metal ions—I. adsorption and kinetics. Water Res 33(13):2992–3000CrossRefGoogle Scholar
  139. Tzanavaras Paraskevas D et al (2007) Review of analytical methods for the determination of chlorine dioxide. Cent Eur J Chem 5(1):1–12CrossRefGoogle Scholar
  140. Uzun I et al (2000) Adsorption of some heavy metal ions from aqueous solution by activated carbon and comparison of percent adsorption results of activated carbon with those of some other adsorbents. Turk J Chem 24:291–297Google Scholar
  141. Vaca Mier M et al (2001) Heavy metal removal with mexican clinoptilolite: multi-component ionic exchange. Water Res 35(2):373–378CrossRefGoogle Scholar
  142. Vijaya Y et al (2008) Modified chitosan and calcium alginate biopolymer sorbents for removal of nickel (II) through adsorption. Carbohydr Polym 72(2):261–271CrossRefGoogle Scholar
  143. Volesky B (2003) Sorption by biomass. BV Sorbex Inc, MontrealGoogle Scholar
  144. Wan Ngah WS et al (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83(4):1446–1456CrossRefGoogle Scholar
  145. Wang LK et al (2004) Chemical precipitation and physiochemical treatment processes, vol 3. Humana Press, New York, pp 141–198Google Scholar
  146. Wang J et al (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27(2):195–226CrossRefGoogle Scholar
  147. WHO (2004) Guidelines for drinking water quality, vol 1. W. H. Organization, GenevaGoogle Scholar
  148. Wiesner MR et al (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40(14):4336–4345CrossRefGoogle Scholar
  149. Zhao Y et al (2012) Occurrence and formation of chloro- and bromo-benzoquinones during drinking water disinfection. Water Res 46(14):4351–4360CrossRefGoogle Scholar
  150. Zhou H et al (2002) Advanced technologies in water and wastewater treatment. J Environ Eng Sci 1:247–264CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Electronics & Communication EngineeringAssam Don Bosco UniversityAzara, GuwahatiIndia
  2. 2.Chemical Engineering DepartmentBaluchistan University of IT, Engineering and Management SciencesQuettaPakistan
  3. 3.Functional Materials Division, Materials- and Nano Physics Department, ICT SchoolKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations