Environmental Chemistry Letters

, Volume 13, Issue 4, pp 459–463 | Cite as

Soil irrigation with toxic cyanobacterial microcystins increases soil nitrification potential

  • Sylvain Corbel
  • Noureddine Bouaïcha
  • Fabrice Martin-Laurent
  • Olivier Crouzet
  • Christian MouginEmail author
Original Paper


Microcystins are cyclic heptapeptide hepatotoxins produced by aquatic cyanobacteria such as Microcystis aeruginosa. The wide occurrence of toxic microcystins in freshwater is a threat to the quality of water, agriculture, and human and animal health. There is actually little knowledge on the impact of microcystins on soil biomass. Here, an agricultural soil was daily irrigated with a cyanobacterial extract diluted at environmental concentrations of microcystin–leucine–arginine, from 0.005 to 0.1 mg equivalent MC-LR L−1, for 90 days. We measured soil enzymatic activities, nitrification potential activity of the soil microbial community, abundances of ammonia-oxidizing bacteria, and ammonia-oxidizing archaea amoA genes. Our results show an increase in potential nitrification for microcystin levels ranging between 0.005 and 0.02 mg eq. MC-LR L−1. Global enzymatic activities were unchanged. Abundances of total bacteria, archaea, and ammonia-oxidizing functional groups were not modified and could not explain the increase in nitrification.


Microcystins Irrigation Soil Nitrification Enzymatic activities Microbial ecotoxicology 



Authors thank V. Grondin, C. Marrault, G. Delarue, F. Poiroux, A. Trouvé, J.Thénard, G. Caro, B. Pey (UR PESSAC, INRA Versailles), A. Fortineau (UMR EGC, INRA Grignon), and J-P Meunier (UMR IJPB, INRA Versailles) for help and technical assistance. Soil enzymatic activities were achieved on the platform Biochem-Env, a service of the “Investment d’Avenir” infrastructure AnaEE-France, overseen by the French National Research Agency (ANR) (ANR-11-INBS-0001). This work is part of the “Investment d’Avenir” Program overseen by the French National Research Agency (ANR) (LabEx BASC, ANR-11-LABX-0034). The departments PESSAC and ESE are members of the EcoBASC Network. The research was supported with a grant to S. Corbel from Région Ile-de-France, DIM-ASTREA program No. ast110055.


  1. Bouaïcha N, Chézeau A, Turquet J et al (2001) Morphological and toxicological variability of Prorocentrum lima clones isolated from four locations in the south-west Indian Ocean. Toxicon 39:1195–1202. doi: 10.1016/S0041-0101(00)00258-0 CrossRefGoogle Scholar
  2. Bru D, Martin-Laurent F, Philippot L (2008) Quantification of the detrimental effect of a single primer-template mismatch by real-time PCR using the 16S rRNA gene as an example. Appl Environ Microbiol 74:1660–1663. doi: 10.1128/AEM.02403-07 CrossRefGoogle Scholar
  3. Chen J, Song L, Dai J et al (2004) Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.). Toxicon Off J Int Soc Toxinol 43:393–400. doi: 10.1016/j.toxicon.2004.01.011 CrossRefGoogle Scholar
  4. Corbel S, Bouaïcha N, Mougin C (2014a) Dynamics of the toxic cyanobacterial microcystin-leucine-arginine peptide in agricultural soil. Environ Chem Lett 12:535–541. doi: 10.1007/s10311-014-0482-2 CrossRefGoogle Scholar
  5. Corbel S, Mougin C, Bouaïcha N (2014b) Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. Chemosphere 96:1–15. doi: 10.1016/j.chemosphere.2013.07.056 CrossRefGoogle Scholar
  6. Corbel S, Mougin C, Martin-Laurent F et al (2015) Evaluation of phytotoxicity and ecotoxicity potentials of a cyanobacterial extract containing microcystins under realistic environmental concentrations and in a soil–plant system. Chemosphere 128:332–340. doi: 10.1016/j.chemosphere.2015.02.008 CrossRefGoogle Scholar
  7. Crouzet O, Poly F, Bonnemoy F, Bru D, Bisson I, Bohatier J, Philippot L, Mallet L. Functional and structural responses of soil N-cycling microbial communities to the herbicide mesotrione: a dose-effect microcosm approach. Accepted ESPRGoogle Scholar
  8. de Santiago-Martín A, Cheviron N, Quintana JR et al (2013) Metal contamination disturbs biochemical and microbial properties of calcareous agricultural soils of the Mediterranean area. Arch Environ Contam Toxicol 64:388–398. doi: 10.1007/s00244-012-9842-8 CrossRefGoogle Scholar
  9. El Khalloufi F, El Ghazali I, Saqrane S et al (2012) Phytotoxic effects of a natural bloom extract containing microcystins on Lycopersicon esculentum. Ecotoxicol Environ Saf 79:199–205. doi: 10.1016/j.ecoenv.2012.01.002 CrossRefGoogle Scholar
  10. Gupta N, Bhaskar ASB, Dangi RS et al (2001) Toxin production in batch cultures of freshwater cyanobacterium Microcystis aeruginosa. Bull Environ Contam Toxicol 67:0339–0346. doi: 10.1007/s001280130 Google Scholar
  11. Hernández M, Jia Z, Conrad R, Seeger M (2011) Simazine application inhibits nitrification and changes the ammonia-oxidizing bacterial communities in a fertilized agricultural soil. FEMS Microbiol Ecol 78:511–519. doi: 10.1111/j.1574-6941.2011.01180.x CrossRefGoogle Scholar
  12. Ochsenreiter T, Selezi D, Quaiser A et al (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 5:787–797. doi: 10.1046/j.1462-2920.2003.00476.x CrossRefGoogle Scholar
  13. Petersen DG, Blazewicz SJ, Firestone M et al (2012) Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environ Microbiol 14:993–1008. doi: 10.1111/j.1462-2920.2011.02679.x CrossRefGoogle Scholar
  14. Pouria S, de Andrade A, Barbosa J et al (1998) Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. Lancet 352:21–26. doi: 10.1016/S0140-6736(97)12285-1 CrossRefGoogle Scholar
  15. Puddick J, Prinsep MR, Wood SA et al (2013) Isolation and structure determination of two new hydrophobic microcystins from Microcystis sp. (CAWBG11). Phytochem Lett 6:575–581. doi: 10.1016/j.phytol.2013.07.011 CrossRefGoogle Scholar
  16. Robillot C, Hennion MC (2001) Les principales classes de cyanotoxines et leur détermination. In: Frémy JM, Lassus P (eds) Toxines d’algues dans l’alimentation. Ifremer, Brest, pp 41–85Google Scholar
  17. Ruyters S, Nicol GW, Prosser JI et al (2013) Activity of the ammonia oxidizing bacteria is responsible for zinc tolerance development of the ammonia oxidizing community in soil: a stable isotope probing study. Soil Biol Biochem 58:244–247CrossRefGoogle Scholar
  18. Saqrane S, El Ghazali I, Oudra B et al (2008) Effects of cyanobacteria producing microcystins on seed germination and seedling growth of several agricultural plants. J Environ Sci Health B 43:443–451. doi: 10.1080/10934520701796192 CrossRefGoogle Scholar
  19. Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring, and management. E & FN Spon, London, pp 53–125Google Scholar
  20. Wessén E, Söderström M, Stenberg M et al (2011) Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning. ISME J 5:1213–1225. doi: 10.1038/ismej.2010.206 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sylvain Corbel
    • 1
    • 2
  • Noureddine Bouaïcha
    • 1
  • Fabrice Martin-Laurent
    • 3
  • Olivier Crouzet
    • 2
    • 4
  • Christian Mougin
    • 2
    • 4
    Email author
  1. 1.Laboratoire Ecologie, Systématique et Evolution, UMR8079, Univ. Paris-Sud/CNRS/AgroParisTechUniversité Paris-SudOrsayFrance
  2. 2.INRA, UMR1402 ECOSYS, Pôle EcotoxicologieVersailles CedexFrance
  3. 3.INRA, UMR1347 AgroécologieDijonFrance
  4. 4.AgroParisTech, UMR1402 ECOSYSPôle EcotoxicologieVersailles CedexFrance

Personalised recommendations