Advertisement

Environmental Chemistry Letters

, Volume 13, Issue 4, pp 447–452 | Cite as

Soil irrigation with water and toxic cyanobacterial microcystins accelerates tomato development

  • Sylvain Corbel
  • Noureddine Bouaïcha
  • Sylvie Nélieu
  • Christian Mougin
Original Paper

Abstract

Microcystins are cyclic heptapeptides hepatotoxins produced by aquatic cyanobacteria such as Microcystis aeruginosa. The wide occurrence of toxic microcystins in freshwater is a threat to water quality and health of living organisms. Here, we irrigated an agricultural soil daily with a cyanobacterial extract diluted at environmental concentrations of microcystin–leucine–arginine, from 0.005 to 0.1 mg equivalent MC-LR L−1, for 90 days. We analyzed the impact on the growth and physiology of tomato, Solanum lycopersicum cultivar MicroTom. Our results show a stimulation of the tomato plant development, in terms of inflorescence and blooming, after exposure to the lowest concentration, of 0.005 mg eq. MC-LR L−1, during the 40 first days post-germination. That effect was not apparently associated with physiological disturbances of the tomato plants.

Keywords

Microcystins Irrigation Soil Plant development 

Notes

Acknowledgments

Authors thank V. Grondin, C. Marrault, G. Delarue, F. Poiroux, A. Trouvé, J.Thénard, G. Caro, B. Pey (UR PESSAC, INRA Versailles), A. Fortineau (UMR EGC, INRA Grignon) and J-P Meunier (UMR IJPB, INRA Versailles) for help and technical assistance. FAME determinations were achieved on the platform Biochem-Env, a service of the “Investment d’Avenir” infrastructure AnaEE-France, overseen by the French National Research Agency (ANR) (ANR-11-INBS-0001). This work is part of the “Investment d’Avenir” Program overseen by the French National Research Agency (ANR) (LabEx BASC, ANR-11-LABX-0034). The departments PESSAC and ESE are members of the EcoBASC Network. The research was supported with a grant to S. Corbel from Région Ile-de-France, DIM-ASTREA Program No. ast110055.

References

  1. AFNOR (2012) norme AFNOR X31-233. Détermination des effets des polluants sur la flore du sol—Effets des sols contaminés sur la composition en acides gras foliaires de Lactuca sativa Google Scholar
  2. Bouaïcha N, Chézeau A, Turquet J et al (2001) Morphological and toxicological variability of Prorocentrum lima clones isolated from four locations in the south–west Indian Ocean. Toxicon 39:1195–1202. doi: 10.1016/S0041-0101(00)00258-0 CrossRefGoogle Scholar
  3. Chen J, Song L, Dai J et al (2004) Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.). Toxicon Off J Int Soc Toxinology 43:393–400. doi: 10.1016/j.toxicon.2004.01.011 CrossRefGoogle Scholar
  4. Corbel S, Bouaïcha N, Mougin C (2014a) Dynamics of the toxic cyanobacterial microcystin-leucine-arginine peptide in agricultural soil. Environ Chem Lett 12:535–541. doi: 10.1007/s10311-014-0482-2 CrossRefGoogle Scholar
  5. Corbel S, Mougin C, Bouaïcha N (2014b) Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. Chemosphere 96:1–15. doi: 10.1016/j.chemosphere.2013.07.056 CrossRefGoogle Scholar
  6. Corbel S, Mougin C, Martin-Laurent F et al (2015) Evaluation of phytotoxicity and ecotoxicity potentials of a cyanobacterial extract containing microcystins under realistic environmental concentrations and in a soil–plant system. Chemosphere 128:332–340. doi: 10.1016/j.chemosphere.2015.02.008 CrossRefGoogle Scholar
  7. El Khalloufi F, El Ghazali I, Saqrane S et al (2012) Phytotoxic effects of a natural bloom extract containing microcystins on Lycopersicon esculentum. Ecotoxicol Environ Saf 79:199–205. doi: 10.1016/j.ecoenv.2012.01.002 CrossRefGoogle Scholar
  8. Feller CH, Bleiholder L, Buhr H et al (1995) Phänologische Entwicklungsstadien von Gemüsepflanzen: II. Fruchtgemüse und Hülsenfrüchte. Pflanzenschutzd 47:217–232Google Scholar
  9. Geider RJ, Osborne BA (1992) Algal photosynthesis: the measurement of algal gas exchange (current phycology 2)Google Scholar
  10. Gupta N, Bhaskar ASB, Dangi RS et al (2001) Toxin production in batch cultures of freshwater cyanobacterium Microcystis aeruginosa. Bull Environ Contam Toxicol 67:0339–0346. doi: 10.1007/s001280130 Google Scholar
  11. Le Guedard ML, Schraauwers B, Larrieu I, Bessoule J-J (2008) Development of a biomarker for metal bioavailability: the lettuce fatty acid composition. Environ Toxicol Chem 27:1147–1151. doi: 10.1897/07-277.1 CrossRefGoogle Scholar
  12. Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998. doi: 10.1093/jxb/ert208 CrossRefGoogle Scholar
  13. Porra R (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73:149–156. doi: 10.1023/A:1020470224740 CrossRefGoogle Scholar
  14. Pouria S, de Andrade A, Barbosa J et al (1998) Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. The Lancet 352:21–26. doi: 10.1016/S0140-6736(97)12285-1 CrossRefGoogle Scholar
  15. Puddick J, Prinsep MR, Wood SA et al (2013) Isolation and structure determination of two new hydrophobic microcystins from Microcystis sp. (CAWBG11). Phytochem Lett 6:575–581. doi: 10.1016/j.phytol.2013.07.011 CrossRefGoogle Scholar
  16. Robillot C, Hennion MC (2001) Les principales classes de cyanotoxines et leur détermination. In: Frémy JM, Lassus P (eds) Toxines d’algues dans l’alimentation. Ifremer, Brest, pp 41–85Google Scholar
  17. Saqrane S, El Ghazali I, Oudra B et al (2008) Effects of cyanobacteria producing microcystins on seed germination and seedling growth of several agricultural plants. J Environ Sci Health B 43:443–451. doi: 10.1080/10934520701796192 CrossRefGoogle Scholar
  18. Saqrane S, Ouahid Y, El Ghazali I et al (2009) Physiological changes in Triticum durum, Zea mays, Pisum sativum and Lens esculenta cultivars, caused by irrigation with water contaminated with microcystins: a laboratory experimental approach. Toxicon 53:786–796. doi: 10.1016/j.toxicon.2009.01.028 CrossRefGoogle Scholar
  19. Shahzad T, Chenu C, Repinçay C et al (2012) Plant clipping decelerates the mineralization of recalcitrant soil organic matter under multiple grassland species. Soil Biol Biochem 51:73–80. doi: 10.1016/j.soilbio.2012.04.014 CrossRefGoogle Scholar
  20. Sivonen K, Jones G (1999) In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring, and management. Taylor & Francis, UKGoogle Scholar
  21. Takayama K, Nishina H, Iyoki S, et al (2011) Early detection of drought stress in tomato plants with chlorophyll fluorescence imaging practical application of the speaking plant approach in a Greenhouse. In: World Congress. pp 1785–1790Google Scholar
  22. Verdoni N, Mench M, Cassagne C, Bessoule J-J (2001) Fatty acid composition of tomato leaves as biomarkers of metal-contaminated soils. Environ Toxicol Chem 20:382–388. doi: 10.1002/etc.5620200220 CrossRefGoogle Scholar
  23. Wagner A, Michalek W, Jamiolkowska A (2006) Chlorophyll fluorescence measurements as indicators of fusariosis severity in tomato plants. Agron Res 4:461–464Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sylvain Corbel
    • 1
    • 2
  • Noureddine Bouaïcha
    • 1
  • Sylvie Nélieu
    • 2
    • 3
  • Christian Mougin
    • 2
    • 3
  1. 1.Laboratoire Ecologie, Systématique et Evolution, UMR8079, Univ. Paris-Sud/CNRS/AgroParisTechUniversité Paris-SudOrsayFrance
  2. 2.INRA, UMR1402 ECOSYSPôle EcotoxicologieVersailles CedexFrance
  3. 3.AgroParisTech, UMR1402 ECOSYSPôle EcotoxicologieVersailles CedexFrance

Personalised recommendations