Advertisement

Environmental Chemistry Letters

, Volume 13, Issue 4, pp 439–445 | Cite as

Plants to harvest rhenium: scientific and economic viability

  • Luís A. B. Novo
  • Claudio F. Mahler
  • Luís González
Original Paper

Abstract

Rhenium (Re) is one of the rarest (7 × 10−8 %) and most widely dispersed elements on Earth’s upper crust. As a consequence of its scarcity, Re is also one of the most expensive metals in the world market. Re is indeed highly demanded by the aerospace industry for the production of high-temperature superalloy turbine blades. There is a lack of study on the viability of Re phytomining. The occurrence of Re in vegetation surrounding natural and anthropogenic sources of Re suggests the ability of plants for Re accumulation and biogeochemical indication. Here we studied the aptitude of Indian mustard and scouring rush to uptake Re, in order to test the feasibility of Re phytomining. An organic substrate was spiked with KReO4 to attain Re concentrations of 5, 10, 20, 40, and 80 mg kg−1. The plants were grown for 45 and 75 days under controlled greenhouse conditions. Plant tissue samples from roots and shoots were collected in septuplicate at both harvests and analysed by atomic emission spectroscopy. Our results show high concentrations of Re in plants, ranging from 1553 to 22,617 mg kg−1 at 45 days and from 1348 to 23,396 mg kg−1 at 75 days for Indian mustard range. A profit of 3906 US$ ha−1 harvest−1 is expected from the recovered Re. Our findings thus demonstrate for the first time the scientific and economic viability of Re phytomining.

Keywords

Phytomining Phytoremediation Rhenium Brassica juncea Equisetum hyemale 

Notes

Acknowledgments

The authors gratefully acknowledge financial support from the Portuguese Foundation for Science and Technology (FCT) under grant Nº SFRH/BPD/103476/2014 and the National Council for Scientific and Technological Development of Brazil (CNPq) under process No. 150084/2014-5.

References

  1. Abisheva Z, Zagorodnyaya A (2002) Hydrometallurgy in rare metal production technology in Kazakhstan. Hydrometallurgy 63:55–63. doi: 10.1016/S0304-386X(01)00201-8 CrossRefGoogle Scholar
  2. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881. doi: 10.1016/j.chemosphere.2013.01.075 CrossRefGoogle Scholar
  3. Anderson CWN (2013) Phytoextraction to promote sustainable development. J Degrad Min Lands Manag 1:51–56Google Scholar
  4. Anderson C, Moreno F, Meech J (2005) A field demonstration of gold phytoextraction technology. Miner Eng 18:385–392. doi: 10.1016/j.mineng.2004.07.002 CrossRefGoogle Scholar
  5. Anderson CWN, Meech JA, Veiga MM, Krisnayanti D (2014) Can phytoextraction support the gold mining industry in developing countries? Case study for Indonesia. In: Shechtman international symposium, Cancun, pp 1–13Google Scholar
  6. Askari Zamani MA, Hiroyoshi N, Tsunekawa M et al (2005) Bioleaching of Sarcheshmeh molybdenite concentrate for extraction of rhenium. Hydrometallurgy 80:23–31. doi: 10.1016/j.hydromet.2005.06.016 CrossRefGoogle Scholar
  7. Balbuena TS, He R, Salvato F et al (2012) Large-scale proteome comparative analysis of developing rhizomes of the ancient vascular plant equisetum hyemale. Front Plant Sci 3:131. doi: 10.3389/fpls.2012.00131 CrossRefGoogle Scholar
  8. Bozhkov O, Tzvetkova C, Blagoeva T (2007) Plant biosphere—natural extractor and concentrator of rhenium from soils and waters. In: WSEAS international conference on waste management, water pollution, air pollution, indoor climate. pp 257–261Google Scholar
  9. Bozhkov O, Tzvetkova C, Borisova L, Bryskin B (2012) Phytomining: new method for rhenium. Adv Mater Process 170:34–37Google Scholar
  10. Cannon HL, Shacklette HT, Bastron H (1968) Metal absorption by Equisetum (Horsetail). US Geological Survey, WashingtonGoogle Scholar
  11. Clemente R, Dickinson NM, Lepp NW (2008) Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity. Environ Pollut 155:254–261CrossRefGoogle Scholar
  12. Clemente R, Hartley W, Riby P et al (2010) Trace element mobility in a contaminated soil two years after field-amendment with a greenwaste compost mulch. Environ Pollut 158:1644–1651. doi: 10.1016/j.envpol.2009.12.006 CrossRefGoogle Scholar
  13. Dunn CE (2007) Handbook of exploration and environmental geochemistry, 9th edn. Elsevier, AmsterdamGoogle Scholar
  14. Harris AT, Naidoo K, Nokes J et al (2009) Indicative assessment of the feasibility of Ni and Au phytomining in Australia. J Clean Prod 17:194–200. doi: 10.1016/j.jclepro.2008.04.011 CrossRefGoogle Scholar
  15. Hunt AJ, Anderson CWN, Bruce N et al (2014) Phytoextraction as a tool for green chemistry. Green Process Synth 3:3–22. doi: 10.1515/gps-2013-0103 Google Scholar
  16. Jones JB (2001) Laboratory guide for conducting soil tests and plant analysis. CRC Press, Boca RatonGoogle Scholar
  17. Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC Press, Boca RatonGoogle Scholar
  18. Krisnayanti BD, Anderson C (2014) Gold phytomining: a new idea for environmental sustainability in indonesia. Indones J Geosci 1:1–7Google Scholar
  19. Liu Y-B, Tang Z-X, Darmency H et al (2012) The effects of seed size on hybrids formed between oilseed rape (Brassica napus) and wild brown mustard (B. juncea). PLoS One 7:e39705. doi: 10.1371/journal.pone.0039705 CrossRefGoogle Scholar
  20. Naumov AV (2007) Rhythms of rhenium. Russ J Non-Ferrous Met 48:418–423. doi: 10.3103/S1067821207060089 CrossRefGoogle Scholar
  21. Novo LAB, Covelo EF, González L (2013) The use of waste-derived amendments to promote the growth of Indian mustard in copper mine tailings. Miner Eng 53:24–30. doi: 10.1016/j.mineng.2013.07.004 CrossRefGoogle Scholar
  22. Polyak DE (2014a) Rhenium. 2012 Minerals yearbook. U.S. Geological Survey, pp 62.1–62.5Google Scholar
  23. Polyak DE (2014b) Rhenium. Mineral commodity summaries. U.S. Geological Survey, pp 130–131Google Scholar
  24. Sheoran V, Sheoran AS, Poonia P (2009) Phytomining: a review. Miner Eng 22:1007–1019. doi: 10.1016/j.mineng.2009.04.001 CrossRefGoogle Scholar
  25. Sheoran V, Sheoran AS, Poonia P (2013) Phytomining of gold: a review. J Geochemical Explor 128:42–50. doi: 10.1016/j.gexplo.2013.01.008 CrossRefGoogle Scholar
  26. Stankovic S, Kalaba P, Stankovic AR (2014) Biota as toxic metal indicators. Environ Chem Lett 12:63–84. doi: 10.1007/s10311-013-0430-6 CrossRefGoogle Scholar
  27. Sun Y, Zhou Q, Diao C (2008) Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresour Technol 99:1103–1110. doi: 10.1016/j.biortech.2007.02.035 CrossRefGoogle Scholar
  28. Tagami K, Uchida S (2005) A comparison of concentration ratios for technetium and nutrient uptake by three plant species. Chemosphere 60:714–717. doi: 10.1016/j.chemosphere.2005.03.087 CrossRefGoogle Scholar
  29. Tagami K, Uchida S (2010) Rhenium: radionuclides. In: Encyclopedia of inorganic and bioinorganic chemistry. John Wiley & Sons, pp 23–26. doi: 10.1002/9781119951438.eibc0431
  30. Vamerali T, Bandiera M, Mosca G (2009) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17. doi: 10.1007/s10311-009-0268-0 CrossRefGoogle Scholar
  31. Van der Ent A, Baker AJM, Reeves RD et al (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334. doi: 10.1007/s11104-012-1287-3 CrossRefGoogle Scholar
  32. Warren HV, Delavault RE (1950) Gold and silver content of some trees and horsetails in British Columbia. Geol Soc Am Bull 61:123–128. doi: 10.1130/0016-7606(1950)61[123:GASCOS]2.0.CO;2 CrossRefGoogle Scholar
  33. Wilson-Corral V, Anderson CWN, Rodriguez-Lopez M (2012) Gold phytomining. A review of the relevance of this technology to mineral extraction in the 21st century. J Environ Manage 111:249–257. doi: 10.1016/j.jenvman.2012.07.037 CrossRefGoogle Scholar
  34. Witters N, Mendelsohn RO, Van Slycken S et al (2012) Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: energy production and carbon dioxide abatement. Biomass Bioenergy 39:454–469. doi: 10.1016/j.biombioe.2011.08.016 CrossRefGoogle Scholar
  35. Yang Q, Yao D, Li S et al (2012) The research progress on carbon fixation and oxygen release of phytoremediation. J Coal Sci Eng 18:196–200. doi: 10.1007/s12404-012-0216-7 CrossRefGoogle Scholar
  36. Zakrzewska-Koltuniewicz G, Herdzik-Koniecko I, Cojocaru C, Chajduk E (2014) Experimental design and optimization of leaching process for recovery of valuable chemical elements (U, La, V, Mo, Yb and Th) from low-grade uranium ore. J Hazard Mater 275:136–145. doi: 10.1016/j.jhazmat.2014.04.066 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.GeoBioTec, Department of GeosciencesUniversity of AveiroAveiroPortugal
  2. 2.Department of Civil EngineeringFederal University of Rio de JaneiroRio de JaneiroBrazil
  3. 3.Department of Plant Biology and Soil ScienceUniversity of VigoVigoSpain

Personalised recommendations