Environmental Chemistry Letters

, Volume 13, Issue 2, pp 173–190 | Cite as

Conversion of plant materials into hydroxymethylfurfural using ionic liquids

  • Young-Byung Yi
  • Jin-Woo Lee
  • Chung-Han ChungEmail author


The use of fossil fuels now induces two major issues. First, fossil fuel burning is increasing atmospheric carbon dioxide (CO2) concentrations and, in turn, global warming. Second, fossil fuel resources are limited and will thus decrease in the long run. As a potential solution, there is a need for ecological manufacturing processes that convert raw plant materials into chemical products. For instance, raw plants can be directly converted into hydroxymethylfurfural, which is a versatile intermediate for the synthesis of valuable biofuels such as dimethylfuran and 5-ethoxymethyl-2-furfural. This technology has two benefits for chemical sustainability. First, the pretreatment step is eliminated, thus contributing to reduction of CO2 emissions. Second, plants are sustainable resources versus fossil fuels, which are limited. Here, we review current sustainable technologies for the production of biobased products and hydroxymethylfurfural from plants, using in particular ionic liquids. Plant sources include poplar, switchgrass, miscanthus, weed plants, and agave species.


Raw plant feedstock Hydroxymethylfurfural Ionic liquid Biobased chemicals Bioenergy Plant bioengineering technology Biomass recalcitrance 



This work was financially supported by The Dong-A University Research Fund. The authors deeply acknowledge the financial support.


  1. Abdulmalik O, Safo MK, Chen Q, Yang J, Brugnara C, Ohene-Frempong K, Abraham DJ, Asakura T (2005) 5-hydroxymethyl-2-furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells. Br J Haematol 128:552–561. doi: 10.1111/j.1365-2141.2004.05332.x Google Scholar
  2. Adebayo GB, Ameen OM, Abass LT (2011) Physico-chemical properties of biodiesel produced from Jatropha curcas oil and fossil diesel. J Microbiol Biotechnol Res 1:12–16Google Scholar
  3. Agarwal UP, Zhu JY, Ralph SA (2011) Enzymatic hydrolysis of biomass: effects of crystallinity, particle size, and lignin removal. In: Proceedings of the 16th ISWFPC, pp 910–914Google Scholar
  4. Ahmed MM, Nasri SN, Hamza UD (2012) Biomass as a renewable source of chemicals for industrial applications. Int J Eng Sci Technol 4:721–730Google Scholar
  5. Alam MI, De S, Dutta S, Saha B (2012) Solid-acid and ionic-liquid catalyzed one-pot transformation of biorenewable substrates into a platform chemical and a promising biofuel. RSC Adv 2:6890–6896. doi: 10.1039/C2RA20574B Google Scholar
  6. Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41:8075–8098. doi: 10.1039/C2CS35188A Google Scholar
  7. Amiri H, Karimi K, Roodpeyma S (2010) Production of furans from rice straw by single-phase and biphasic systems. Carbohydr Res 345:2133–2138. doi: 10.1016/j.carres.2010.07.032 Google Scholar
  8. Azapagic A (2014) Sustainability considerations for integrated biorefineries. Trends Biotechnol 32:1–4. doi: 10.1016/j.tibtech.2013.10.009 Google Scholar
  9. Barrière Y, Riboulet C, Méchin V, Maltese S, Pichon M, Cardinal A, Lapierre C, Lübberstedt T, Martinant J-P (2007) Genetics and genomics of lignification in grass cell walls based on maize as model species. G3 Genes Genomes Genomics 1:133–156Google Scholar
  10. Bauer-Marinovic M, Taugner F, Florian S, Glatt H (2012) Toxicity studies with 5-hydroxymethylfurfural and its metabolite 5-sulphooxymethylfurfural in wild-type mice and transgenic mice expressing human sulphotransferases 1A1 and 1A2. Arch Toxicol 86:701–711. doi: 10.1007/s00204-012-0807-5 Google Scholar
  11. Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131:1979–1985. doi: 10.1021/ja808537j Google Scholar
  12. Binder JB, Raines RT (2010) Fermentable sugars by chemical hydrolysis of biomass. Proc Natl Acad Sci USA 107:4516–4521. doi: 10.1073/pnas.0912073107 Google Scholar
  13. Binder JB, Cefali AV, Blank JJ, Raines RT (2010) Mechanistic insights on the conversion of sugars into 5-hydroxymethylfurfural. Energy Environ Sci 3:765–771. doi: 10.1039/B923961H Google Scholar
  14. Bindschedler LV, Tuerck J, Maunders M, Ruel K, Petit-Conil M, Danoun S, Boudet A-M, Joseleau J-P, Bolwell GP (2007) Modification of hemicellulose content by antisense downregulation of UDP-glucuronate decarboxylase in tobacco and its consequences for cellulose extractability. Phytochemistry 68:2635–2648. doi: 10.1016/j.phytochem.2007.08.029 Google Scholar
  15. Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet 44:337–363. doi: 10.1146/annurev-genet-102209-163508 Google Scholar
  16. Bonawitz ND, Chapple C (2013) Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty? Curr Opin Biotechnol 24:336–343. doi: 10.1016/j.copbio.2012.11.004 Google Scholar
  17. Bonawitz ND, Kim JI, Tobimatsu Y, Ciesielski PN, Anderson NA, Ximenes E, Maeda J, Ralph J, Donohoe BS, Ladisch M, Chapple C (2014) Disruption of mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature 509:376–379. doi: 10.1038/nature13084 Google Scholar
  18. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554. doi: 10.1039/B922014C Google Scholar
  19. Burk MJ (2010) Sustainable production of industrial chemicals from sugar. Int Sugar J 112(1333):30–35Google Scholar
  20. Canadell JG, Quéré CL, Raupach MR (2007) Contributions to accelerating atmospheric CO2, growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104:18866–18870. doi: 10.1073/pnas.0702737104 Google Scholar
  21. Capuano E, Fogliano V (2011) Acrylamide and 5-hydroxymethylfurfural (HMF): a review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT Food Sci Technol 44:793–810. doi: 10.1016/j.lwt.2010.11.002 Google Scholar
  22. Chareonlimkun A, Champreda V, Shotipruk A, Laosiripojana N (2010) Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2 and mixed-oxide TiO2–ZrO2 under hot compressed water (HCW) condition. Bioresour Technol 101:4179–4186. doi: 10.1016/j.biortech.2010.01.037 Google Scholar
  23. Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46:7164–7183. doi: 10.1002/anie.200604274 Google Scholar
  24. Christensen CH, Rass-Hansen J, Marsden CC, Taarning E, Egeblad K (2008) The renewable chemicals industry. ChemSusChem 1:283–289. doi: 10.1002/cssc.200700168 Google Scholar
  25. Chun J-A, Lee J-W, Yi Y-B, Hong S-S, Chung C-H (2010a) Direct conversion of starch to hydroxymethylfurfural in the presence of an ionic liquid with metal chloride. Starch Stärke 62:326–330. doi: 10.1002/star.201000012 Google Scholar
  26. Chun J-A, Lee J-W, Yi Y-B, Hong S-S, Chung C-H (2010b) Catalytic production of hydroxymethylfurfural from sucrose using 1-methyl-3-octylimidazolium chloride ionic liquid. Korean J Chem Eng 27:930–935. doi: 10.1007/s11814-010-0167-x Google Scholar
  27. Corma A, Ibora S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502. doi: 10.1021/cr050989d Google Scholar
  28. Dashtban M, Gilbert A, Fatehi P (2014) Recent advancements in the production of hydroxymethylfurfural. RSC Adv 4:2037–2050. doi: 10.1039/C3RA45396K Google Scholar
  29. de María PD (2008) “Nonsolvent” application of ionic liquids in biotransformation and organocatalysis. Angew Chem Int Ed 47:6960–6968. doi: 10.1002/anie.200703305 Google Scholar
  30. DeMartini JD, Pattathil S, Miller JS, Li H, Hahn MG, Wyman CE (2013) Investigating plant cell wall components that affect biomass recalcitrance in poplar and switchgrass. Energy Environ Sci 6:898–909. doi: 10.1039/C3EE23801F Google Scholar
  31. Ding X, Wang M-Y, Yao Y-X, Li G-Y, Cai B-C (2010) Protective effect of 5-hydroxymethylfurfural derived from processed Fructus Corni on human hepatocyte LO2 injured by hydrogen peroxide and its mechanism. J Ethnopharmacol 128:373–376. doi: 10.1016/j.jep.2010.01.043 Google Scholar
  32. Dodds D, Gross R (2007) Chemicals from biomass. Science 318:1250–1251. doi: 10.1126/science.1146356 Google Scholar
  33. Dusselier M, Wouwe PV, Dewaele A, Makshina E, Sels BF (2013) Lactic acid as a platform chemical in the economy: the role of chemocatalysis. Energ Environ Sci 6:1415–1442. doi: 10.1039/C3EE00069A Google Scholar
  34. Dutta S, De S, Saha B (2012) A brief summary of the synthesis of polyester building-block chemicals and biofuels from 5-hydroxymethylfurfural. ChemPlusChem 77:259–272. doi: 10.1002/cplu.201100035 Google Scholar
  35. Erickson B, Nelson JE, Winters P (2012) Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol J 7:176–185. doi: 10.1002/biot.201100069 Google Scholar
  36. Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie FT, Moore B III, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291–296. doi: 10.1126/science.290.5490.291 Google Scholar
  37. Feng X, East AJ, Hammond W, Jaffe M (2010) Sugar-based chemicals for environmentally sustainable applications. In: ACS symposium series, vol 1061, Chapter 1. ACS Publications, Washington, DC, pp 3–27Google Scholar
  38. Fesenko E, Edwards R (2014) Plant synthetic biology: a new platform for industrial biotechnology. J Exp Bot 65:1927–1937. doi: 10.1093/jxb/eru070 Google Scholar
  39. Ghandi K (2014) A review of ionic liquids, their limits and applications. Green Sustain Chem 4:44–53. doi: 10.4236/gsc.2014.41008 Google Scholar
  40. Goujon T, Minic Z, Amrani AE, Lerouxel O, Aletti E, Lapierre C, Aletti E, Lapierre C, Joseleau J-P, Jouanin L (2003) AtBXL1, a novel higher plant (Arabidopsis thaliana) putative beta-xylosidase gene, is involved in secondary cell wall metabolism and plant development. Plant J 33:677–690. doi: 10.1046/j.1365-313X.2003.01654.x Google Scholar
  41. Gowik U, Westhoff P (2011) The path from C3 to C4 photosynthesis. Plant Physiol 155:56–63. doi: 10.1104/pp.110.165308 Google Scholar
  42. Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. doi: 10.1126/science.1137016 Google Scholar
  43. Hisano H, Nandakumar R, Wang Z-Y (2009) Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell Develop Biol Plant 45:306–313. doi: 10.1007/s11627-009-9219-5 Google Scholar
  44. Hoeven MV (2013) CO2 emissions from fuel combustion highlights. International Energy Agency (2013 Edition).
  45. Holm MS, Saravanamurugan S, Taarning E (2010) Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science 328:602–605. doi: 10.1126/science.1183990 Google Scholar
  46. Ihemere U, Arias-Garzon D, Lawrence S, Sayre R (2006) Genetic modification of cassava for enhanced starch production. Plant Biotechnol J 4:453–465. doi: 10.1111/j.1467-7652.2006.00195.x Google Scholar
  47. Jobling S (2004) Improving starch for food and industrial applications. Curr Opin Plant Biol 7:210–218. doi: 10.1016/j.pbi.2003.12.001 Google Scholar
  48. Johnson JM-F, Coleman MD, Gesch R, Jaradat A, Mitchell R, Reicosky D, Wilhelm WW (2007) Biomass-bioenergy crops in the United States: a changing paradigm. Am J Plant Sci Biotechnol 1:1–28Google Scholar
  49. Jong JD, Higson A, Walsh P, Wellisch M (2009) Bio-based chemicals; value-added products from biorefineries. IEA bioenergy—Task42 biorefinery.
  50. Kawamoto H, Saito S, Hatanaka W, Saka S (2007) Catalytic pyrolysis of cellulose in sulfolane with some acidic catalysts. J Wood Sci 53:127–133. doi: 10.1007/s10086-006-0835-y Google Scholar
  51. Kazi FK, Patel AD, Serrano-Ruiz JC, Dumesic JA, Anex P (2011) Techno-economic analysis of dimethylfuran (DMF) and hydroxymethylfurfural (HMF) production from pure fructose in catalytic processes. Chem Eng J 169:329–338. doi: 10.1016/j.cej.2011.03.018 Google Scholar
  52. Lee JW (2013) Synthetic biology: a new opportunity in the field of plant biochemistry & physiology. J Plant Biochem Physiol 1:1–2. doi: 10.4172/2329-9029.1000e101 Google Scholar
  53. Lee C, Teng Q, Huang W, Zhong R, Ye ZH (2009) Downregulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant Cell Physiol 50:1075–1089. doi: 10.1093/pcp/pcp060 Google Scholar
  54. Lee JW, Shin JY, Chun YS, Jang HB, Song CE, Lee S-G (2010) Toward understanding the origin of positive effects of ionic liquids on catalysis: formation of more reactive catalysts and stabilization of reactive intermediates and transition states in ionic liquids. Acc Chem Res 43:985–994. doi: 10.1021/ar9002202 Google Scholar
  55. Lee J-W, Ha M-G, Yi Y-B, Chung C-H (2011) Chromium halides mediated production of hydroxymethylfurfural from starch-rich acorn biomass in an acidic ionic liquid. Carbohydr Res 346:177–182. doi: 10.1016/j.carres.2010.11.009 Google Scholar
  56. Lew CM, Rajabbeigi N, Tsapatsis M (2012) One-pot synthesis of 5-(ethoxymethyl)furfural from glucose using Sn-BEA and Amberlyst catalyst. Ind Eng Chem Res 51:5364–5366. doi: 10.1021/ie2025536 Google Scholar
  57. Li Y-X, Li Y, Qian Z-J, Kim M-M, Kim S-K (2009) In vitro antioxidant activity of 5-HMF isolated from marine red alga Laurencia undulata in free radical mediated oxidative systems. J Microbiol Biotechnol 19:1319–1327. doi: 10.4014/jmb.0901.0004 Google Scholar
  58. Li C, Sun L, Simmons BA, Singh S (2013) Comparing the recalcitrance of eucalyptus, pine, and switchgrass using ionic liquid and dilute acid pretreatment. Bioenerg Res 6:14–23. doi: 10.1007/s12155-012-9220-4 Google Scholar
  59. Li H, Pattathil S, Foston MB, Ding S-Y, Kumar R, Gao X, Mittal A, Yarbrough JM, Himmel ME, Ragauskas AJ, Hahn MG (2014) Agave proves to be a low recalcitrant lignocellulosic feedstock for biofuels production on semi-arid lands. Biotechnol Biofuels 7:50. doi: 10.1186/1754-6834-7-50 Google Scholar
  60. Lichtenthaler FW (2012) Carbohydrates as organic raw materials. Ullmann’s encyclopedia of industrial chemistry, vol 6. Wiley, Weinheim, pp 583–616Google Scholar
  61. Lichtenthaler FW, Peters S (2004) Carbohydrates as green materials for the chemical industry. C R Chim 7:65–90. doi: 10.1016/j.crci.2004.02.002 Google Scholar
  62. Liu B, Zhang Z, Huang K (2013) Cellulose sulfuric acid as bio-supported and recyclable solid acid catalyst for synthesis of 5-hydroxymethylfurfural and 5-ethoxymethylfurfural from fructose. Cellulose 20:2081–2089. doi: 10.1007/s10570-013-9944-0 Google Scholar
  63. Liu A, Zhang Z, Fang Z, Liu B, Huang K (2014) Synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose in ethanol catalyzed by MCM-41 supported phosphotungstic acid. J Ind Eng Chem 20:1977–1984. doi: 10.1016/j.jiec.2013.09.020 Google Scholar
  64. Lu S, Li L, Zhou G (2010) Genetic modification of wood quality for second-generation biofuel production. GM Crops 1:230–236. doi: 10.4161/gmcr.1.4.13486 Google Scholar
  65. Mascal M, Nikitin EB (2008) Direct, high-yield conversion of cellulose into biofuel. Angew Chem Int Ed 47:7924–7926. doi: 10.1002/anie.200801594 Google Scholar
  66. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46. doi: 10.1016/S0960-8524(01)00118-3 Google Scholar
  67. Monien BH, Engst W, Barknowitz G, Seidel A, Glatt H (2012) Mutagenicity of 5- hydroxymethylfurfural in V79 cells expressing human SULT1A1: identification and mass spectrometric quantification of DNA adducts formed. Chem Res Toxicol 25:1484–1492. doi: 10.1021/tx300150n Google Scholar
  68. Moniruzzaman M, Nakashima K, Kamiya N, Goto M (2010) Recent advances of enzymatic reactions in ionic liquids. Biochem Eng J 48:295–314. doi: 10.1016/j.bej.2009.10.002 Google Scholar
  69. Montross M, Crofcheck C (2010) Energy crops for the production of biofuels. In: Crocker M (ed) Thermochemical conversion of biomass to liquid fuels and chemicals. RSC Publishing, Cambridge, pp 26–45Google Scholar
  70. Ochoa-Villarreal M, Aispuro-Hernández E, Vargas-Arispuro I, Martínez-Téllez MÁ (2012) Plant cell wall polymers: function, structure, and biological activity of their derivatives. doi: 10.5772/46094
  71. Olivier JGJ, Janssens-Maenhout G, Muntean M, Peters JAHW (2013) Trends in global CO2 emissions: 2013 Report. PBL Netherlands Environmental Assessment Agency, PBL publication number: 1148.,
  72. Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A Gen 373:1–56. doi: 10.1016/j.apcata.2009.10.008 Google Scholar
  73. Peplow M (2014) Cellulosic ethanol fights for life. Nature 507:152–153Google Scholar
  74. Petkovic M, Seddon KR, Rebelo LPN, Pereira CS (2011) Ionic liquids: a pathway to environmental acceptability. Chem Soc Rev 40:1383–1403. doi: 10.1039/C004968A Google Scholar
  75. Philp JC, Ritchie RJ, Allan JEM (2013) Biobased chemicals: the convergence of green chemistry with industrial biotechnology. Trends Biotechnol 31:219–222. doi: 10.1016/j.tibtech.2012.12.007 Google Scholar
  76. Putten R-J, Waal JC, Jong Ed, Rasrendra CB, Heeres HJ, Vries JGd (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597. doi: 10.1021/cr300182k
  77. Quijano G, Couvert A, Amrane A (2010) Ionic liquids: applications and future trends in bioreactor technology. Bioresour Technol 101:8923–8930. doi: 10.1016/j.biortech.2010.06.161 Google Scholar
  78. Qureshi ZS, Deshmukh KM, Bhanage BM (2014) Applications of ionic liquids in organic synthesis and catalysis. Clean Technol Environ Policy 16:1487–1513. doi: 10.1007/s10098-013-0660-0 Google Scholar
  79. Ragauskas AJ, Beckham GI, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:709 (12468431–12468440). doi: 10.1126/science.1246843
  80. Ralph J, Akiyama T, Coleman HD, Mansfield SD (2012) Effects of lignin structure of coumarate 3-hydroxylase downregulation in poplar. Bioenerg Res 5:1009–1019. doi: 10.1007/s12155-012-9218-y Google Scholar
  81. Román-Leshkov Y, Chheda JN, Dumesic JA (2006) Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312:1933–1937. doi: 10.1126/science.1126337 Google Scholar
  82. Román-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447:982–986. doi: 10.1038/nature05923 Google Scholar
  83. Rosatella AA, Simeonov SP, Frade RFM, Afonso AM (2011) 5-hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13:754–793. doi: 10.1039/C0GC00401D Google Scholar
  84. Sassi J-F, Tekely P, Chanzy H (2000) Relative susceptibility of the Iα and Iβ phase of cellulose towards acetylation. Cellulose 7:119–132. doi: 10.1023/A:1009224008802 Google Scholar
  85. Shen H, Poovaiah C, Ziebell A, Tschaplinski TJ, Pattathil S, Gjersing E, Engle NL, Katahira R, Pu Y, Sykes R, Chen F, Ragauskas AJ, Mielenz JR, Hahn MG, Davis M, Stewart CN Jr, Dixon RA (2013) Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production. Biotechnol Biofuels 6:71–85. doi: 10.1186/1754-6834-6-71 Google Scholar
  86. Simmie JM, Würmel J (2013) Harmonizing production, properties and environmental consequences of liquid transport fuels from biomass—2,5-dimethylfuran as a case study. ChemSusChem 6:36–41. doi: 10.1002/cssc.201200738 Google Scholar
  87. Simmons BA, Loqué D, Ralph J (2010) Advances in modifying lignin for enhanced biofuel production. Curr Opin Plant Biol 13:312–319. doi: 10.1016/j.pbi.2010.03.001 Google Scholar
  88. Slattery CJ, Kavakli IH, Okita TW (2000) Engineering starch for increased quantity and quality. Trends Plant Sci 5:291–298. doi: 10.1016/S1360-1385(00)01657-5 Google Scholar
  89. Sommerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792. doi: 10.1126/science.1189268 Google Scholar
  90. Ståhlberg T, Fu W, Woodley JM, Riisager A (2011) Synthesis of 5-(hydroxymethyl)furfural in ionic liquids: paving the way to renewable chemicals. ChemSusChem 4:451–458. doi: 10.1002/cssc.201000374 Google Scholar
  91. Stark A (2011) Ionic liquids in the biorefinery: a critical assessment of their potential. Energy Environ Sci 4:19–32. doi: 10.1039/C0EE00246A Google Scholar
  92. Tadesse H, Luque R (2011) Advances on biomass pretreatment using ionic liquids: an overview. Energy Environ Sci 4:3913–3929. doi: 10.1039/C0EE00667J Google Scholar
  93. Tanger P, Field JL, Jahn CE, DeFoort MW, Leach JE (2013) Biomass for thermochemical conversion targets and challenges. Frontiers Plant Sci 4(Article 218):1–20. doi: 10.3389/fpls.2013.00218
  94. Teong SP, Yi G, Zhang Y (2014) Hydroxymethylfurfural production from bioresources: past, present and future. Green Chem 16:2015–2026. doi: 10.1039/C3GC42018C Google Scholar
  95. Thananatthanachon T, Rauchfuss TB (2010) Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as reagent. Angew Chem Int Ed 49:6616–6618. doi: 10.1002/anie.201002267 Google Scholar
  96. Tobimatsu Y, Chen F, Nakashima J, Escamilla-Trevino LL, Jackson L, Dixon RA, Ralph J (2013) Coexistence but independent biosynthesis of catechyl and guaiacyl/syringyl lignin polymers in seed coats. Plant Cell 25:2587–2600. doi: 10.1105/tpc.113.113142 Google Scholar
  97. Vanholme R, Ralph J, Akiyama T, Lu F, Pazo JR, Kim H, Christensen JH, Reusel BV, Storme V, Rycke RD, Rohde A, Morreel K, Boerjan W (2010) Engineering traditional monolignols out of lignin by concomitant up-regulation of F5H1 and down-regulation of COMT in Arabidopsis. Plant J 64:885–897. doi: 10.1111/j.1365-313X.2010.04353.x Google Scholar
  98. Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber JH, Ralph J, Boerjan W (2012) Metabolic engineering of novel lignin in biomass crops. New Phytol 196:978–1000. doi: 10.1111/j.1469-8137.2012.04337.x Google Scholar
  99. Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Morgan TJ (2012) An overview of the organic and inorganic phase composition of biomass. Fuels 94:1–33. doi: 10.1016/j.fuel.2011.09.030 Google Scholar
  100. Wagner A, Tobimatsu Y, Phillips L, Flint H, Torr K, Donaldson L, Paars L, Ralph J (2011) CCoAOMT suppression modifies lignin composition in Pinus radiate. Plant J 67:119–129. doi: 10.1111/j.1365-313X.2011.04580.x Google Scholar
  101. Wang P, Yu H, Zhan S, Wang S (2011) Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid. Bioresour Technol 102:4179–4183. doi: 10.1016/j.biortech.2010.12.073 Google Scholar
  102. Wang C, Guo L, Li Y, Wang Z (2012) Systematic comparison of C3 and C4 plants based on metabolic network analysis. BMC Syst Biol 6(Suppl 2):S9(1–14). doi: 10.1186/1752-0509-6-S2-S9
  103. Wang H, Deng T, Wang Y, Cui X, Qi Y, Mu X, Hou X, Zhu Y (2013) Graphene oxide as a facile catalyst for the one-pot conversion of carbohydrates into 5-ethoxymethylfurfural. Green Chem 15:2379–2383. doi: 10.1039/C3GC41109E Google Scholar
  104. Wilkerson CG, Mansfield SD, Lu F, Withers S, Park JY, Karlen SD, Gonzales-Vigil E, Padmakshan D, Unda F, Rencoret J, Ralph J (2014) Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science 344:90–93. doi: 10.1126/science.1250161 Google Scholar
  105. Xu Y, Hanna MA, Isom L (2008) “Green” chemicals from renewable agricultural biomass—a mini review. Open Agric J 2:54–61. doi: 10.2174/1874331500802010054 Google Scholar
  106. Yah L, Greenwood AA, Hossain A, Yang B (2014) A comprehensive mechanistic kinetic model for dilute acid hydrolysis of switchgrass cellulose to glucose, 5-HMF and levulinic acid. RSC Adv 4:23492–23504. doi: 10.1039/C4RA01631A Google Scholar
  107. Yang Y, Hu C-W, Abu-Omar MM (2012) Conversion of carbohydrates and lignocllulosic biomass into 5-hydroxymethylfurfural using AlCl3·6H2O catalyst in a biphasic solvent system. Green Chem 14:509–513. doi: 10.1039/C1GC15972K Google Scholar
  108. Yang F, Mitra P, Zhang L, Prak L, Verhertbruggen Y, Kim J-S, Sun L, Zheng K, Tang K, Auer M, Scheller HV, Loqué D (2013) Engineering secondary cell wall deposition in plants. Plant Biotechnol J 11:325–335. doi: 10.1111/pbi.12016 Google Scholar
  109. Yi Y-B, Lee J-W, Hong S-S, Choi Y-H, Chung C-H (2011) Acid-mediated production of hydroxymethylfurfural from raw plant biomass with high inulin in an ionic liquid. J Ind Eng Chem 17:6–9. doi: 10.1016/j.jiec.2010.12.017 Google Scholar
  110. Yi Y-B, Ha M-G, Lee J-W, Chung C-H (2012a) New role of chromium fluoride: its catalytic action on the synthesis of hydroxymethylfurfural in ionic liquid using raw plant biomass and characterization of biomass hydrolysis. Chem Eng J 180:370–375. doi: 10.1016/j.cej.2011.10.055 Google Scholar
  111. Yi Y-B, Lee J-W, Choi Y-H, Park S-M, Chung C-H (2012b) Simple process for production of hydroxymethylfurfural from raw biomasses of girasol and potato tubers. Biomass Bioenerg 39:484–488. doi: 10.1016/j.biombioe.2012.01.011 Google Scholar
  112. Yi Y-B, Lee J-W, Choi Y-H, Park S-M, Chung C-H (2012c) Direct production of hydroxymethylfurfural from raw grape berry biomass using ionic liquids and metal chlorides. Environ Chem Lett 10:13–19. doi: 10.1007/s10311-011-0322-6 Google Scholar
  113. Yi Y-B, Ha M-G, Lee J-W, Chung C-H (2013a) Effect of different halide types on HMF synthesis from kudzu extract in ionic liquid. J Clean Prod 41:244–250. doi: 10.1016/j.jclepro.2012.10.023 Google Scholar
  114. Yi Y-B, Ha M-G, Lee J-W, Park S-M, Choi Y-H, Chung C-H (2013b) Direct conversion of citrus peel waste into hydroxymethylfurfural in ionic liquid by mediation of fluorinated metal catalysts. J Ind Eng Chem 19:523528. doi: 10.1016/j.jiec.2012.09.004 Google Scholar
  115. Yi Y-B, Ha M-G, Lee J-W, Chung C-H (2013c) Inulin conversion to hydroxymethylfurfural by Brønsted acid in ionic liquid and its physicochemical characterization. Korean J Chem Eng 30:1429–1435. doi: 10.1007/s11814-013-0078-8 Google Scholar
  116. Yi Y-B, Lee J-W, Chung C-H (2014) Sustainable approach to catalytic conversion of starch-based biomaterials into hydroxymethylfurfural using ionic liquids. Curr Org Chem 18:1149–1158. doi: 10.2174/1385272819999140526163023 Google Scholar
  117. Yoshida M, Liu T, Uchida S, Kawarada K, Ukagami Y, Ichinise H, Kaneko S, Fukuda K (2008) Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci Biotechnol Biochem 72:805–810. doi: 10.1271/bbb.70689 Google Scholar
  118. Youngs H, Sommerville C (2012) Development of feedstocks for cellulosic biofuels. F1000 Biol Rep 4:10.
  119. Zeeman SC, Kossmann J, Smith AM (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol 61:209–234. doi: 10.1146/annurev-arplant-042809-112301 Google Scholar
  120. Zhang ZC (2013) Catalytic transformation of carbohydrates and lignin in ionic liquids. WIREs Energy Environ 2(6):655–672Google Scholar
  121. Zhang Z, Zhao ZK (2010) Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Bioresour Technol 101:1111–1114. doi: 10.1016/j.biortech.2009.09.010 Google Scholar
  122. Zhang K, Bhuiya M-W, Pazo JR, Miao Y, Kim H, Ralph J, Liu CJ (2012) An engineered monolignol 4-O-methyltransferase depresses lignin biosynthesis and confers novel metabolic capability in Arabidopsis. Plant Cell 24:3135–3152. doi: 10.1105/tpc.112.101287 Google Scholar
  123. Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316:1597–1600. doi: 10.1126/science.1141199 Google Scholar
  124. Zhong S, Daniel R, Xu H, Zhang J, Turner D, Wyszynski M, Richards P (2010) Combustion and emission of 2,5-dimethylfuran in a direct-injection spark-ignition engine. Energy Fuels 24:2891–2899. doi: 10.1021/ef901575a Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of BiotechnologyDong-A UniversityBusanSouth Korea
  2. 2.ReSEAT ProgramKorea Institute of Science and Technology InformationSeoulSouth Korea

Personalised recommendations