Environmental Chemistry Letters

, Volume 13, Issue 1, pp 49–58 | Cite as

Biogeochemistry of selenium. A review

  • Virender K. Sharma
  • Thomas J. McDonald
  • Mary Sohn
  • George A. K. Anquandah
  • Maurizio Pettine
  • Radek Zboril
Review

Abstract

Selenium levels and speciation in environmental compartments and the dynamics of global Se cycling continue to be a subject of intense interest largely because Se is both an essential element and a toxicant at elevated levels. While Se containing amino acids and proteins are known to be critical for normal metabolic functions in many life forms, selenosis, poisoning due to chronic excessive Se intake, has been associated with neurological impairment. This paper reviews the current understanding of the biogeochemistry of selenium in the natural environment. The factors that affect Se speciation in natural environments are chemical, physical, and biological processes. Several inorganic species of Se (−2, 0, +4, and +6) and organic species (monomethylated and dimethylated) have been reported in aquatic systems. Both HSeO3 and SeO32− would be present in natural waters. Under mild oxidizing conditions, HSeO3 and SeO32− are the major species, while HSe would be the dominant species at pH greater than 4 and strong reducing conditions. The biogeochemistry of selenium is discussed in terms of variation of speciation with pH and redox conditions, sorption on solid surfaces, role of reducing species under oxic/anoxic conditions, and interaction with natural organic matter.

Keywords

Selenium Speciation Abiotic reduction Sorption Organic matter 

References

  1. Abrams MM, Burau RG, Zasoski RJ (1990) Organic selenium distribution in selected California soils. Soil Sci Soc Am J 54:979–982CrossRefGoogle Scholar
  2. Alloway BJ (1990) Heavy metals in soils. Blackie, LondonGoogle Scholar
  3. Balistrieri LS, Chao TT (1987) Seleniun adsorption by geothite. Soil Sci Soc Am J 51:1145–1151CrossRefGoogle Scholar
  4. Beckett R, Ranville J (2006) Chapter 17: Natural organic matter. In: Newcombe G, Dixon D (eds) Interface science in drinking water treatment, vol 10, pp 299–315Google Scholar
  5. Bierla K, Szpunar J, Yiannikouris A, Lobinski R (2012) Comprehensive speciation of selenium in selenium-rich yeast. TrAC Trends Anal Chem 41:122–132CrossRefGoogle Scholar
  6. Bruggeman C, Maes A, Vancluysen J (2007) The interaction of dissolved Boom Clay and Gorleben humic substances with selenium oxyanions (selenite and selenate). Appl Geochem 22:1371–1379CrossRefGoogle Scholar
  7. Buchs B, Evangelou MWH, Winkel LHE, Lenz M (2013) Colloidal properties of nanoparticular biogenic selenium govern environmental fate and bioremediation effectiveness. Environ Sci Technol 47:2401–2407CrossRefGoogle Scholar
  8. Charter RA, Tabatabai MA, Schafer JW (1995) Arsenic, molybdenum, selenium, and tungsten contents of fertilizers and phosphate rocks. Commun Soil Sci Plant Anal 26:3051–3062CrossRefGoogle Scholar
  9. Chen Y, Zhou X, Tong J, Truong Y, Belzile N (2005) Photochemical behavior of inorganic and organic selenium compounds in various aqueous solutions. Anal Chim Acta 545:149–157CrossRefGoogle Scholar
  10. Chinn R, Barrett S (1999) Occurrence of amino acids in drinking water sources. Book of Abstracts, ACS Nat Meeting 217Google Scholar
  11. Chipinda I, Zhang XD, Simoyi RH, Siegel PD (2008) Mercaptobenzothiazole allergenicity-role of the thiol group. Cutan Ocul Toxicol 27:103–116CrossRefGoogle Scholar
  12. Combs GF Jr (2001) Selenium in global food systems. Br J Nutr 85:517–547CrossRefGoogle Scholar
  13. Cooke TD, Bruland KW (1987) Aquatic chemistry of selenium: evidence of biomethylation 1. Environ Sci Technol 21:1214–1219CrossRefGoogle Scholar
  14. Crea P, De Stefano C, Millero FJ, Sammartano S, Sharma VK (2010) Dissociation constants of protonated oxidized glutathione in seawater media at different salinities. Aquat Geochem 16:447–466CrossRefGoogle Scholar
  15. Cutter GA, Cutter LS (1995) Behavior of dissolved antimony, arsenic, and selenium in the Atlantic Ocean. Mar Chem 49:295–306CrossRefGoogle Scholar
  16. Cutter GA, Cutter LS (2004) Selenium biogeochemistry in the San Francisco Bay estuary: changes in water column behavior. Estuar Coast Shelf Sci 61:463–476CrossRefGoogle Scholar
  17. Dauphas N (2013) Sulphur from heaven and hell. Nature 501:175–176CrossRefGoogle Scholar
  18. Dumont E, Vanhaecke F, Cornelis R (2006) Selenium speciation from food source to metabolites: a critical review. Anal Bioanal Chem 385:1304–1323CrossRefGoogle Scholar
  19. Emmanuelle B, Virginie M, Fabienne S, Isabelle I, Martine P-, Bernard L, Sylvie R (2012) Selenium exposure in subjects living in areas with high selenium concentrated drinking water: results of a French integrated exposure assessment survey. Environ Int 40:155–161CrossRefGoogle Scholar
  20. Fernández-Martínez A, Charlet L (2009) Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev Environ Sci Biotechnol 8:81–110CrossRefGoogle Scholar
  21. Fitch A, Stevenson FJ (1984) Comparison of models for determining stability constants of metal complexes with humic substances. Soil Sci Soc Am J 48:1044–1050CrossRefGoogle Scholar
  22. Floor GH, Román-Ross G (2012) Selenium in volcanic environments: a review. Appl Geochem 27:517–531CrossRefGoogle Scholar
  23. Fordyce F (2007) Selenium geochemistry and health. Ambio 36:94–97CrossRefGoogle Scholar
  24. Gennari F, Sharma VK, Pettine M, Campanella L, Millero FJ (2014) Reduction of selenite by cysteine in ionic media. Geochim Cosmochim Acta 124:98–108CrossRefGoogle Scholar
  25. Goldberg S, Glaubig RA (1988) Anion sorption on a calcareous, montmorillonitic soil-selenium. Soil Sci Soc Am J 52:954–958CrossRefGoogle Scholar
  26. Guo X, Sturgeon RE, Mester Z, Gardner GJ (2003) Photochemical alkylation of inorganic selenium in the presence of low molecular weight organic acids. Environ Sci Technol 37:5645–5650CrossRefGoogle Scholar
  27. Gustafsson JP, Johnsson L (1992) Selenium retention in the organic matter of Swedish forest soils. J Soil Sci 43:461–472CrossRefGoogle Scholar
  28. Huang X, Liu X, Luo Q, Liu J, Shen J (2011) Artificial selenoenzymes: Designed and redesigned. Chem Soc Rev 40:1171–1184Google Scholar
  29. Ihnat M (1992) Chapter 16 selenium. Techniques and instrumentation in analytical chemistry. In: Stoeppler M (ed) Hazardous Metals in the Environment, vol 12, pp 475–515Google Scholar
  30. Iwaoka M, Arai K (2013) From sulfur to selenium. A new research arena in chemical biology and biological chemistry. Curr Chem Biol 7:2–24CrossRefGoogle Scholar
  31. Johnson TM (2004) A review of mass-dependent fractionation of selenium isotopes and implications for other heavy stable isotopes. Chem Geol 204:201–214CrossRefGoogle Scholar
  32. Jordan N, Ritter A, Scheinost AC, Weiss S, Schild D, Hübner R (2014) Selenium(IV) uptake by maghemite (γ-Fe2O3). Environ Sci Technol 48:1665–1674CrossRefGoogle Scholar
  33. Kamei-Ishikawa N, Tagami K, Uchida S (2007) Sorption kinetics of selenium on humic acid. J Radioanal Nucl Chem 274:555–561CrossRefGoogle Scholar
  34. Kitaguchi T, Ogra Y, Iwashita Y, Suzuki KT (2008) Speciation of selenium in selenium-enriched seeds, buckwheat (Fagopyrum esculentum Moench) and quinoa (Chenopodium quinoa Willdenow). Eur Food Res Technol 227:1455–1460CrossRefGoogle Scholar
  35. König S, Luguet A, Lorand J-, Wombacher F, Lissner M (2012) Selenium and tellurium systematics of the Earth’s mantle from high precision analyses of ultra-depleted orogenic peridotites. Geochim Cosmochim Acta 86:354–366CrossRefGoogle Scholar
  36. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443CrossRefGoogle Scholar
  37. Kunenkov EV, Kononikhin AS, Perminova IV, Hertkorn N, Gaspar A, Schmitt-Kopplin P, Popov IA, Garmash AV, Nikolaev EN (2009) Total mass difference statistics algorithm: a new approach to identification of high-mass building blocks in electrospray ionization fourier transform ion cyclotron mass spectrometry data of natural organic matter. Anal Chem 81:10106–10115CrossRefGoogle Scholar
  38. Laglera LM, Tovar-Sánchez A (2012) Direct recognition and quantification by voltammetry of thiol/thioamide mixes in seawater. Talanta 89:496–504CrossRefGoogle Scholar
  39. Laglera LM, Van Den Berg CMG (2003) Copper complexation by thiol compounds in estuarine waters. Mar Chem 82:71–89CrossRefGoogle Scholar
  40. Laglera LM, van den Berg CMG (2006) Photochemical oxidation of thiols and copper complexing ligands in estuarine waters. Mar Chem 101:130–140CrossRefGoogle Scholar
  41. Laglera LM, Downes J, Tovar-Sánchez A, Monticelli D (2014) Cathodic pseudopolarography: a new tool for the identification and quantification of cysteine, cystine and other low molecular weight thiols in seawater. Anal Chim Acta 836:24–33CrossRefGoogle Scholar
  42. Lakin HW (1972) Selenium accumulation in soils and its absorption by plants and animals. Spec Pap Geol Soc Am 140:45–53Google Scholar
  43. Lenz M, Lens PNL (2009) The essential toxin: the changing perception of selenium in environmental sciences. Sci Total Environ 407:3620–3633CrossRefGoogle Scholar
  44. Lidman F, Mörth C-, Björkvald L, Laudon H (2011) Selenium dynamics in boreal streams: the role of wetlands and changing groundwater tables. Environ Sci Technol 45:2677–2683CrossRefGoogle Scholar
  45. Lobanov AV, Hatfield DL, Gladyshev VN (2009) Eukaryotic selenoproteins and selenoproteomes. Biochim Biophys Acta Gen Subj 1790:1424–1428CrossRefGoogle Scholar
  46. Luoma SN, Presser TS (2009) Emerging opportunities in management of selenium contamination. Environ Sci Technol 43:8483–8487CrossRefGoogle Scholar
  47. Maurer F, Christl I, Kretzschmar R (2010) Reduction and reoxidation of humic acid: influence on spectroscopic properties and proton binding. Environ Sci Technol 44:5787–5792CrossRefGoogle Scholar
  48. Mechora T, Germ M, Stibilj V (2012) Selenium and its species in the aquatic moss Fontinalis antipyretica. Sci Total Environ 438:122–126CrossRefGoogle Scholar
  49. Nakamaru YM, Altansuvd J (2014) Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: a review. Chemosphere 111:366–371CrossRefGoogle Scholar
  50. Nicolli HB, Bundschuh J, Blanco MDC, Tujchneider OC, Panarello HO, Dapeña C, Rusansky JE (2012) Arsenic and associated trace-elements in groundwater from the Chaco-Pampean plain, Argentina: results from 100 years of research. Sci Total Environ 429:36–56CrossRefGoogle Scholar
  51. Nogueira CW, Rocha JBT (2011) Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol 85:1313–1359CrossRefGoogle Scholar
  52. Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49CrossRefGoogle Scholar
  53. Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139CrossRefGoogle Scholar
  54. Ogra Y, Anan Y (2009) Selenometabolomics: identification of selenometabolites and specification of their biological significance by complementary use of elemental and molecular mass spectrometry. J Anal At Spectrom 24:1477–1488CrossRefGoogle Scholar
  55. Ogra Y, Anan Y (2012) Selenometabolomics explored by speciation. Biol Pharm Bull 35:1863–1869CrossRefGoogle Scholar
  56. Pettine M, Gennari F, Campanella L, Casentini B, Marani D (2012) The reduction of selenium(IV) by hydrogen sulfide in aqueous solutions. Geochim Cosmochim Acta 83:37–47CrossRefGoogle Scholar
  57. Pettine M, Gennari F, Campanella L (2013) The reaction of selenium (IV) with ascorbic acid: its relevance in aqueous and soil systems. Chemosphere 90:245–250CrossRefGoogle Scholar
  58. Qin H-, Zhu J-, Liang L, Wang M-, Su H (2013) The bioavailability of selenium and risk assessment for human selenium poisoning in high-Se areas, China. Environ Int 52:66–74CrossRefGoogle Scholar
  59. Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6:25–54CrossRefGoogle Scholar
  60. Sakuragi T, Sawa S, Sato S, Kozaki T, Mitsugashira T, Hara M, Suzuki Y (2005) Interaction of americium(III) with humic acid over wide pH region. J Radioanal Nucl Chem 265:349–353CrossRefGoogle Scholar
  61. Schellenger AEP, Larese-Casanova P (2013) Oxygen isotope indicators of selenate reaction with Fe(II) and Fe(III) hydroxides. Environ Sci Technol 47:6254–6262Google Scholar
  62. Scheuhammer A, Braune B, Chan HM, Frouin H, Krey A, Letcher R, Loseto L, Noël M, Ostertag S, Ross P, Wayland M (2014) Recent progress on our understanding of the biological effects of mercury in fish and wildlife in the Canadian Arctic. Sci Total Environ. doi:10.1016/j.scitotenv.2014.05.142
  63. Schlekat CE, Dowdle PR, Lee B-, Luoma SN, Oremland RS (2000) Bioavailability of particle-associated Se to the bivalve Potamocorbula amurensis. Environ Sci Technol 34:4504–4510CrossRefGoogle Scholar
  64. Schmidt R, Tantoyotai P, Fakra SC, Marcus MA, Yang SI, Pickering IJ, Bañuelos GS, Hristova KR, Freeman JL (2013) Selenium biotransformations in an engineered aquatic ecosystem for bioremediation of agricultural wastewater via brine shrimp production. Environ Sci Technol 47:5057–5065CrossRefGoogle Scholar
  65. Séby F, Potin-Gautier M, Giffaut E, Borge G, Donard OFX (2001) A critical review of thermodynamic data for selenium speciesat 25°C. Chem Geol 171:173–194CrossRefGoogle Scholar
  66. Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35:743–759CrossRefGoogle Scholar
  67. Sharma VK, Casteran F, Millero FJ, De Stefano C (2002) Dissociation constants of protonated cysteine species in NaCl media. J Solut Chem 31:783–792CrossRefGoogle Scholar
  68. Sohrin Y, Bruland KW (2011) Global status of trace elements in the ocean. TrAC Trends Anal Chem 30:1291–1307CrossRefGoogle Scholar
  69. Stroud JL, McGrath SP, Zhao F- (2012) Selenium speciation in soil extracts using LC-ICP-MS. Int J Environ Anal Chem 92:222–236CrossRefGoogle Scholar
  70. Struyk Z, Sposito G (2001) Redox properties of standard humic acids. Geoderma 102:329–346CrossRefGoogle Scholar
  71. Tabelin CB, Hashimoto A, Igarashi T, Yoneda T (2014) Leaching of boron, arsenic and selenium from sedimentary rocks: II. pH dependence, speciation and mechanisms of release. Sci Total Environ 473–474:244–253CrossRefGoogle Scholar
  72. Tam S-, Chow A, Hadley D (1995) Effects of organic component on the immobilization of selenium on iron oxyhydroxide. Sci Total Environ 164:1–7CrossRefGoogle Scholar
  73. Tam S-, Johnson SA, Graham A (1999) The effect of organic structures on pentachlorophenol adsorption on soil. Water Air Soil Pollut 115:337–346CrossRefGoogle Scholar
  74. Tolu J, Le Hécho I, Bueno M, Thiry Y, Potin-Gautier M (2011) Selenium speciation analysis at trace level in soils. Anal Chim Acta 684:126–133CrossRefGoogle Scholar
  75. Tolu J, Di Tullo P, Le Hécho I, Thiry Y, Pannier F, Potin-Gautier M, Bueno M (2014a) A new methodology involving stable isotope tracer to compare simultaneously short- and long-term selenium mobility in soils. Anal Bioanal Chem 406:1221–1231CrossRefGoogle Scholar
  76. Tolu J, Thiry Y, Bueno M, Jolivet C, Potin-Gautier M, Le Hécho I (2014b) Distribution and speciation of ambient selenium in contrasted soils, from mineral to organic rich. Sci Total Environ 479–480:93–101CrossRefGoogle Scholar
  77. Torres J, Pintos V, Dominguez S, Kremer C, Kremer E (2010) Selenite and selenate speciation in natural waters: interaction with divalent metal ions. J Solut Chem 39:1–10CrossRefGoogle Scholar
  78. Uden PC, Boakye HT, Kahakachchi C, Tyson JF (2004) Selective detection and identification of Se containing compounds—review and recent developments. J Chromatogr A 1050:85–93CrossRefGoogle Scholar
  79. VillaRomero JF, Kausch M, Pallud C (2013) Selenate reduction and adsorption in littoral sediments from a hypersaline California lake, the Salton Sea. Hydrobiologia 709:129–142CrossRefGoogle Scholar
  80. Wallschläger D, Feldmann J (2010) Formation, occurrence, significance, and analysis of organoselenium and organotellurium compounds in the environment. Metal Ions Life Sci 7:319–364CrossRefGoogle Scholar
  81. Wang Z, Becker H (2013) Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer. Nature 499:328–331CrossRefGoogle Scholar
  82. Wen H, Carignan J (2007) Reviews on atmospheric selenium: emissions, speciation and fate. Atmos Environ 41:7151–7165CrossRefGoogle Scholar
  83. Winkel LHE, Johnson CA, Lenz M, Grundl T, Leupin OX, Amini M, Charlet L (2012) Environmental selenium research: from microscopic processes to global understanding. Environ Sci Technol 46:571–579CrossRefGoogle Scholar
  84. Zhu J-, Johnson TM, Clark SK, Zhu X-, Wang X- (2014) Selenium redox cycling during weathering of Se-rich shales: a selenium isotope study. Geochim Cosmochim Acta 126:228–249CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Virender K. Sharma
    • 1
  • Thomas J. McDonald
    • 1
  • Mary Sohn
    • 2
  • George A. K. Anquandah
    • 2
  • Maurizio Pettine
    • 3
  • Radek Zboril
    • 4
  1. 1.Department of Environmental and Occupational Health, School of Public HealthTexas A&M UniversityCollege StationUSA
  2. 2.Department of ChemistryFlorida Institute of TechnologyMelbourneUSA
  3. 3.Water Research Institute (IRSA)National Research Council (CNR)Monterotondo (RM)Italy
  4. 4.Department of Physical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and MaterialsPalacky University in OlomoucOlomoucCzech Republic

Personalised recommendations