Environmental Chemistry Letters

, Volume 12, Issue 1, pp 117–137 | Cite as

History on organotin compounds, from snails to humans

  • Ana C. A. Sousa
  • M. Ramiro Pastorinho
  • Shin Takahashi
  • Shinsuke Tanabe
Review

Abstract

Organotin compounds are industrial chemicals used as biocides, polyvinyl chloride stabilizers and industrial catalysts for the manufacture of silicone and polyurethane foams. Despite multiple applications, organotin notoriety is due to tributyltin, a potent biocide used in antifouling paints. Because of the intensive use of tributyltin for the protection of ships’ hulls, tributyltin has been largely released into waters, resulting in adverse and even bizarre effects on aquatic organisms, such as imposex in gastropods. However, organotins include other compounds such as tributyltin derivatives, phenyltins and octyltins. Organotin use in plastics, silicone and foams results in their occurrence almost everywhere, e.g., clothes, toys, wallpaper, food containers, household piping and medical devices. Hence, humans are exposed to organotins not solely through ingestion of contaminated seafood but also through direct contact with treated products and by inhalation and ingestion of dust. As a consequence, organotins have been detected in human samples. Toxicity data reveal that organotins are endocrine disruptors, immunotoxicants, carcinogens and obesogens. Here, we review the levels, fate and effects of organotin compounds toward wildlife and humans, starting with a description of organotin applications, with particular incidence in antifouling paints. The global contamination of the marine environment and the deleterious effects of tributyltin onto nontarget organisms are addressed, with particular attention to the imposex phenomenon. The restrictions on tributyltin use in antifouling paints are also described alongside with the new regulations for organotins in consumer products. The sources and pathways of organotins in the environment are discussed, studies in human exposure are presented, and future research is proposed.

Keywords

Antifouling paints Biomonitoring Imposex Obesogen Organotin compounds Tributyltin (TBT) 

Notes

Acknowledgments

This work was financially supported by Portuguese Foundation for Science and Technology FCT trough program COMPETE and the projects PEst-C/SAU/UI0709/2011 and PEst-C/MAR/LA0017/2011. Ana C. A. Sousa and M. Ramiro Pastorinho acknowledge FCT for the postdoctoral Grants SFRH/BPD/65884/2009 and SFRH/BPD/26689/2006. The authors also thank Vitor Madaleno for kindly permitting the use of his photographs.

References

  1. Adams WA, Xu Y, Little J, Fristachi AF, Rice G, Impellitteri CA (2011) Predicting the migration rate of dialkyl organotins from PVC pipe into water. Environ Sci Technol 45(16):6902–6907. doi:10.1021/es201552x Google Scholar
  2. Airaksinen R, Rantakokko P, Turunen AW, Vartiainen T, Vuorinen PJ, Lappalainen A, Vihervuori A, Mannio J, Hallikainen A (2010) Organotin intake through fish consumption in Finland. Environ Res 110(6):544–547. doi:10.1016/j.envres.2010.06.004 Google Scholar
  3. Allsopp M, Santillo D, Johnston P (2001) Hazardous chemicals in carpets. Greenpeace Research Laboratories. Technical Note 01/2001. University of Exeter. http://www.greenpeace.to/publications/carpet.pdf
  4. Alzieu C (1998) Tributyltin: case study of a chronic contaminant in the coastal environment. Ocean Coast Manag 40:23–26. doi:10.1016/S0964-5691(98)00036-2 Google Scholar
  5. Alzieu C (2000) Environmental impact of TBT: the French experience. Sci Total Environ 258(1–2):99–102. doi:10.1016/S0048-9697(00)00510-6 Google Scholar
  6. American Chemistry Council (ACC) (2012) Global business of chemistry: global chemical shipments by country/region. http://www.americanchemistry.com/Jobs/EconomicStatistics/Industry-Profile/Global-Business-of-Chemistry
  7. Antizar-Ladislao B (2008) Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environ Int 34(2):292–308. doi:10.1016/j.envint.2007.09.005 Google Scholar
  8. Aono A, Takeuchi I (2008) Effects of tributyltin at concentrations below ambient levels in seawater on Caprella danilevskii (Crustacea: Amphipoda: Caprellidae). Mar Pollut Bull 57(6–12):515–523. doi:10.1016/j.marpolbul.2008.02.031 Google Scholar
  9. Appel KE (2004) Organotin compounds: toxicokinetic aspects. Drug Metab Rev 36(3–4):763–786. doi:10.1081/DMR-200033490 Google Scholar
  10. ATSDR (2001) Summary report hair analysis panel discussion exploring the state of the science. The Agency for Toxic Substances and Disease Registry Division of Health Assessment and Consultation and Division of Health Education and Promotion, Atlanta. http://www.atsdr.cdc.gov/HAC/hair_analysis/index.html
  11. ATSDR (2005) Toxicological profile for tin and tin compounds. U.S. Department of Health and Human Services: Public Health Service Agency for Toxic Substances and Disease Registry, Atlanta. http://www.atsdr.cdc.gov/toxprofiles/tp55.pdf
  12. Azenha M, Vasconcelos MT (2002) Butyltin compounds in Portuguese wines. J AgricFood Chem 50(9):2713–2716. doi:10.1021/jf0115544 Google Scholar
  13. Bailey SK, Davies IM (1989) The effects of tributyltin on dogwhelks (Nucella lapillus) from Scottish coastal waters. J Mar Biol Assoc UK 69(2):335–354. doi:10.1017/S0025315400029453 Google Scholar
  14. Barreiro R, González R, Quintela M, Ruiz JM (2001) Imposex, organotin bioaccumulation and sterility of female Nassarius reticulatus in polluted areas of NW Spain. Mar Ecol Prog Ser 218:203–212. doi:10.3354/meps218203 Google Scholar
  15. Barroso CM, Moreira MH (2002) Spatial and temporal changes of TBT pollution along the Portuguese coast: inefficacy of the EEC directive 89/677. Mar Pollut Bull 44(6):480–486. doi:10.1016/S0025-326X(01)00260-0 Google Scholar
  16. Barroso CM, Moreira MH, Bebianno MJ (2002) Imposex, female sterility and organotin contamination of the prosobranch Nassarius reticulatus from the Portuguese coast. Mar Ecol Prog Ser 230:127–135. doi:10.3354/meps230127 Google Scholar
  17. Beaumont AR, Newman PB (1986) Low levels of tributyl tin reduce growth of marine micro-algae. Mar Pollut Bull 17(10):457–461. doi:10.1016/0025-326X(86)90835-0 Google Scholar
  18. Blaber SJM (1970) The occurrence of a penis-like outgrowth behind the right tentacle in spent females of Nucella lapillus (L.). Proc Malacol Soc Lond 39:231–233Google Scholar
  19. Blanck H, Dahl B (1998) Recovery of marine periphyton communities around a Swedish marina after the ban of TBT use in antifouling paints. Mar Pollut Bull 36(6):437–443. doi:10.1016/S0025-326X(97)00209-9 Google Scholar
  20. Bryan GW, Gibbs PE (1991) Impact of low concentrations of tributyltin (TBT) on marine organisms: a review. In: Newman MC, McIntosh AW (eds) Metal ecotoxicology: concepts and applications. Lewis Publishers, Boca Raton, pp 323–361Google Scholar
  21. Bryan GW, Gibbs PE, Burt GR, Hummerstone LG (1987) The effects of tributyltin (TBT) accumulation on adult dog-whelks, Nucella lapillus: long-term field and laboratory experiments. J Mar Biol Assoc UK 67(3):525–544. doi:10.1017/S0025315400027272 Google Scholar
  22. Burton ED, Phillips IR, Hawker DW (2005) In-situ partitioning of butyltin compounds in estuarine sediments. Chemosphere 59(5):585–592. doi:10.1016/j.chemosphere.2004.10.067 Google Scholar
  23. Campillo N, Viñas P, Peñalver R, Cacho JI, Hernández-Córdoba M (2012) Solid-phase microextraction followed by gas chromatography for the speciation of organotin compounds in honey and wine samples: a comparison of atomic emission and mass spectrometry detectors. J Food Compos Anal 25(1):66–73. doi:10.1016/j.jfca.2011.08.001 Google Scholar
  24. Caratozzolo R, Bellini E, Melati MR, Pellerito C, Fiore T, Agati PD, Scopelliti M, Pellerito L (2007) Interference of tributyltin(IV)chloride on the vascular plant cells. Appl Organomet Chem 21(2):66–72. doi:10.1002/aoc.1175 Google Scholar
  25. Cardwell RD, Keithly JC, Simmonds J (1999) Tributyltin in US market-bought seafood and assessment of human health risks. Hum Ecol Risk Assess 5(2):317–335. doi:10.1080/10807039991289464 Google Scholar
  26. Carvalho P (2010) Halophytes in technologies for TBT remediation in sediments. LAP Lambert Academic Publishing. ISBN 978-3-8433-5708-1Google Scholar
  27. Carvalho P, Basto M, Silva M, Machado A, Bordalo A, Vasconcelos M (2010) Ability of salt marsh plants for TBT remediation in sediments. Environ Sci Pollut Res 17(6):1279–1286. doi:10.1007/s11356-010-0307-1 Google Scholar
  28. Champ MA (2000) A review of organotin regulatory strategies, pending actions, related costs and benefits. Sci Total Environ 258:21–71. doi:10.1016/S0048-9697(00)00506-4 Google Scholar
  29. Chen Y, Zuo Z, Chen S, Yan F, Chen Y, Yang Z, Wang C (2008) Reduction of spermatogenesis in mice after tributyltin administration. Toxicology 251(1–3):21–27. doi:10.1016/j.tox.2008.06.015 Google Scholar
  30. Choi M, Moon H-B, Choi H-G (2012) Intake and potential health risk of butyltin compounds from seafood consumption in Korea. Arch Environ Contam Toxicol 62(2):333–340. doi:10.1007/s00244-011-9688-5 Google Scholar
  31. Cruz ASH (2012) Tributyltin (TBT) resistance in Aeromonas molluscorum Av27. PhD Thesis. University of Aveiro, p 225Google Scholar
  32. Cruz A, Oliveira V, Baptista I, Almeida A, Cunha Â, Suzuki S, Mendo S (2012) Effect of tributyltin (TBT) in the metabolic activity of TBT-resistant and sensitive estuarine bacteria. Environ Toxicol 27(1):11–17. doi:10.1002/tox.20605 Google Scholar
  33. Cui Z, Zhang K, Zhou Q, Liu J, Jiang G (2011) Determination of methyltin compounds in urine of occupationally exposed and general population by in situ ethylation and headspace SPME coupled with GC-FPD. Talanta 85(2):1028–1033. doi:10.1016/j.talanta.2011.05.018 Google Scholar
  34. Dafforn KA, Lewis JA, Johnston EL (2011) Antifouling strategies: history and regulation, ecological impacts and mitigation. Mar Pollut Bull 62(3):453–465. doi:10.1016/j.marpolbul.2011.01.012 Google Scholar
  35. Dahllof I, Agrenius S, Blanck H, Hall P, Magnusson K, Molander S (2001) The effect of TBT on the structure of a marine sediment community: a boxcosm study. Mar Pollut Bull 42(8):689–695. doi:10.1016/S0025-326X(00)00219-8 Google Scholar
  36. Davies IM, Bailey SK (1991) The impact of tributyltin from large vessels on the dogwhelk Nucella lapillus (L.) populations around Scottish oil ports. Mar Environ Res 32:202–211. doi:10.1016/0141-1136(91)90042-7 Google Scholar
  37. de Carvalho Oliveira R, Santelli RE (2010) Occurrence and chemical speciation analysis of organotin compounds in the environment: a review. Talanta 82(1):9–24. doi:10.1016/j.talanta.2010.04.046 Google Scholar
  38. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC (2009) Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocr Rev 30(4):293–342. doi:10.1210/er.2009-0002 Google Scholar
  39. Díez S, Ábalos M, Bayona JM (2002) Organotin contamination in sediments from the Western Mediterranean enclosures following 10 years of TBT regulation. Water Res 36:905–918. doi:10.1016/S0043-1354(01)00305-0 Google Scholar
  40. Dirtu A, Van den Eede N, Malarvannan G, Ionas A, Covaci A (2012) Analytical methods for selected emerging contaminants in human matrices: a review. Anal Bioanal Chem 404(9):2555–2581. doi:10.1007/s00216-012-6053-0 Google Scholar
  41. EFSA (2004) Opinion of the scientific panel on contaminants in the food chain on a request from the commission to assess the health risks to consumers associated with exposure to organotins in foodstuffs. EFSA J 102:1–119. http://www.efsa.eu.int Google Scholar
  42. Esteban M, Castaño A (2009) Non-invasive matrices in human biomonitoring: a review. Environ Int 35(2):438–449. doi:10.1016/j.envint.2008.09.003 Google Scholar
  43. Evans SM, Leksono T, McKinnel PD (1995) Tributyltin pollution: a diminishing problem following legislation limiting the use of TBT-based antifouling paints. Mar Pollut Bull 30(1):14–21. doi:10.1016/0025-326X(94)00181-8 Google Scholar
  44. Evans SM, Evans PM, Leksono T (1996) Widespread recovery of dogwhelks, Nucella lapillus (L.), from tributyltin contamination in the North Sea and Clyde Sea. Mar Pollut Bull 32(3):263–269. doi:10.1016/0025-326X(95)00127-9 Google Scholar
  45. EVISA (2009) European virtual institute for speciation analysis—EU bans certain organotin compounds. http://www.speciation.net/News/EU-bans-certain-organotin-compounds-;~/2009/06/05/4298.html
  46. Fargašová A (1996) Inhibitive effect of organotin compounds on the chlorophyll content of the green freshwater alga Scenedesmus quadricauda. Bull Environ Contam Toxicol 57(1):99–106. doi:10.1007/s001289900161 Google Scholar
  47. Fargašová A (1997) The effects of organotin compounds on growth, respiration rate, and chlorophylla content of Scenedesmus quadricauda. Ecotoxicol Environ Saf 37(3):193–198. doi:10.1006/eesa1997.1538 Google Scholar
  48. Fargašová A, Kizlink J (1996) Effect of organotin compounds on the growth of the freshwater alga Scenedesmus quadricauda. Ecotoxicol Environ Saf 34(2):156–159. doi:10.1006/eesa 1996.0057Google Scholar
  49. Fent K (1996a) Ecotoxicology of organotin compounds. Crit Rev Toxicol 26(1):1–117. doi:10.3109/10408449609089891 Google Scholar
  50. Fent K (1996b) Organotin compounds in municipal wastewater and sewage sludge: contamination, fate in treatment process and ecotoxicological consequences. Sci Total Environ 185(1–3):151–159. doi:10.1016/0048-9697(95)05048-5 Google Scholar
  51. Fent K (2006) Worldwide occurrence of organotins from antifouling paints and effects in the aquatic environment. In: Konstantinou IK (ed) Antifouling paint biocides, vol 50. Earth and environmental science: the handbook of environmental chemistry. Springer, Berlin, pp 71–100. doi:10.1007/698_5_050
  52. Forsyth DS, Jay B (1997) Organotin leachates in drinking water from chlorinated poly(vinyl chloride) (CPVC) pipe. Appl Organomet Chem 11(7):551–558. doi:10.1002/(SICI)1099-0739(199707)11:7<551:AID-AOC606>3.0.CO;2-0
  53. Forsyth DS, Weber D, Cleroux C (1992) Determination of butyltin, cyclohexyltin and phenyltin compounds in beers and wines. Food Addit Contam 9(2):161–169. doi:10.1080/02652039209374058 Google Scholar
  54. Forsyth DS, Sun WF, Dalglish K (1994) Survey of organotin compounds in blended wines. Food Addit Contam 11(3):343–350. doi:10.1080/02652039409374233 Google Scholar
  55. Fristachi A, Xu Y, Rice G, Impellitteri CA, Carlson-Lynch H, Little JC (2009) Using probabilistic modeling to evaluate human exposure to organotin in drinking water transported by polyvinyl chloride pipe. Risk Anal 29(11):1615–1628. doi:10.1111/j.1539-6924.2009.01307.x Google Scholar
  56. Fromme H, Mattulat A, Lahrz T, Rüden H (2005) Occurrence of organotin compounds in house dust in Berlin (Germany). Chemosphere 58(10):1377–1383. doi:10.1016/j.chemosphere.2004.09.092 Google Scholar
  57. Gadd GM (2000) Microbial interactions with tributyltin compounds: detoxification, accumulation, and environmental fate. Sci Total Environ 258:119–127. doi:10.1016/S0048-9697(00)00512-X Google Scholar
  58. Gibbs PE, Bryan GW, Pascoe PL, Burt GR (1987) The use of the dog-whelk, Nucella lapillus, as an indicator of tributyltin (TBT) contamination. J Mar Biol Assoc UK 67(3):507–523. doi:10.1017/S0025315400027260 Google Scholar
  59. Gibson CP, Wilson SP (2003) Imposex still evident in eastern Australia 10 years after tributyltin restrictions. Mar Environ Res 55:101–112. doi:10.1007/s00128-011-0482-x Google Scholar
  60. Gipperth L (2009) The legal design of the international and European Union ban on tributyltin antifouling paint: direct and indirect effects. J Environ Manag 90(1):S86–S95. doi:10.1016/j.jenvman.2008.08.013 Google Scholar
  61. Grün F (2010) Obesogens. Curr Opin Endocrinol 17(5):453–459. doi:10.1097/MED.0b013e32833ddea0 Google Scholar
  62. Grün F, Blumberg B (2006) Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology 147(6):s50–s55. doi:10.1210/en.2005-1129 Google Scholar
  63. Guard HE, Cobet AB, Coleman WM III (1981) Methylation of trimethyltin compounds by estuarine sediments. Science 213(4509):770–771. doi:10.1126/science.213.4509.770 Google Scholar
  64. Guérin T, Sirot V, Volatier JL, Leblanc JC (2007) Organotin levels in seafood and its implications for health risk in high-seafood consumers. Sci Total Environ 338(1–3):66–77. doi:10.1016/j.scitotenv.2007.08.027 Google Scholar
  65. Gui-bin J, Qun-fang Z, Bin H (2000a) Speciation of organotin compounds, total tin, and major trace metal elements in poisoned human organs by gas chromatography-flame photometric detector and inductively coupled plasma-mass spectrometry. Environ Sci Technol 34(13):2697–2702. doi:10.1021/es0008822 Google Scholar
  66. Gui-bin J, Qun-fang Z, Bin H (2000b) Tin compounds and major trace metal elements in organotin-poisoned patient’s urine and blood measured by gas chromatography-flame photometric detector and inductively coupled plasma-mass spectrometry. Bull Environ Contam Toxicol 65(3):277–284. doi:10.1007/s001280000125 Google Scholar
  67. Guruge KS, Tanabe S, Iwata H, Taksukawa R, Yamagishi S (1996) Distribution, biomagnification, and elimination of butyltin compound residues in common cormorants (Phalacrocorax carbo) from Lake Biwa, Japan. Arch Environ Contam Toxicol 31(2):210–217. doi:10.1007/BF00212368 Google Scholar
  68. Guruge KS, Tanabe S, Fukuda M, Yamagishi S, Tatsukawa R (1997) Comparative tissue distribution of butyltin compounds in common cormorants (Phalacrocorax carbo) from Japan. Toxicol Environ Chem 58(1–4):197–208. doi:10.1080/02772249709358409 Google Scholar
  69. Hagger JA, Depledge MH, Oehlmann J, Jobling S, Galloway TS (2006) Is there a causal association between genotoxicity and the imposex effect? Environ Health Perspect 114(1):20–26. doi:10.1289/ehp.8048 Google Scholar
  70. Hallas LE, Means JC, Cooney JJ (1982) Methylation of tin by estuarine microorganisms. Science 215(4539):1505–1507. doi:10.1126/science.215 4539.1505Google Scholar
  71. Harding MJC, Rodger GK, Davies IM, Moore JJ (1997) Partial recovery of the dogwhelk (Nucella lapillus) in Sullom Voe, Shetland from tributyltin contamination. Mar Environ Res 44(3):285–304. doi:10.1016/S0141-1136(97)00008-1 Google Scholar
  72. Haynes D, Loong D (2002) Antifoulant (butyltin and copper) concentrations in sediments from the Great Barrier Reef world heritage area, Australia. Environ Pollut 120(2):391–396. doi:10.1016/S0269-7491(02)00113-6 Google Scholar
  73. Haynes D, Christie C, Marshall P, Dobbs K (2002) Antifoulant concentrations at the site of the Bunga Teratai Satu grounding, Great Barrier Reef, Australia. Mar Pollut Bull 44(9):968–972. doi:10.1016/S0025-326X(02)00114-5 Google Scholar
  74. Heindel J (2011) The obesogen hypothesis of obesity: overview and human evidence. In: Lustig RH (ed) Obesity before birth, vol 30. Endocrine updates. Springer, US, pp 355–365. doi:10.1007/978-1-4419-7034-3_17
  75. Heroult J, Bueno M, Potin-Gautier M, Lespes G (2008) Organotin speciation in French brandies and wines by solid-phase microextraction and gas chromatography—pulsed flame photometric detection. J Chromatogr A 1180(1–2):122–130. doi:10.1016/j.chroma.2007.11.084 Google Scholar
  76. Hoch M (2001) Organotin compounds in the environment: an overview. Appl Geochem 16(7–8):719–743. doi:10.1016/S0883-2927(00)00067-6 Google Scholar
  77. Horiguchi T (2009) The endocrine-disrupting effect of organotin compounds for aquatic organisms. In: Takaomi A, Harino H, Ohji M, Langston WJ (eds) Ecotoxicology of antifouling biocides. pp 125–146. doi:10.1007/978-4-431-85709-9_8
  78. Horiguchi T (2012) Ecotoxicological impacts of organotins: an overview. In: Alessandra Pagliarani, Fabiana Trombetti, Ventrella V (eds) Biochemical and biological effects of organotins, vol 1. Bentham Science, pp 3–24. http://dx.doi.org/0.2174/978160805265311201010vii
  79. IMO (1999) Anti-fouling systems moving towards the non-toxic solution. International Maritime Organization, London. http://www.imo.org/includes/blastDataOnly.asp/data_id%3D7986/FOULING2003.pdf
  80. IMO (2002) Focus on IMO: antifouling systems. International Maritime Organization, London. http://www.imo.org/blast/blastDataHelper.asp?data_id=7986&filename=FOULING2003.pdf
  81. Jensen HF, Holmer M, Dahllöf I (2004) Effects of tributyltin (TBT) on the seagrass Ruppia maritima. Mar Pollut Bull 49(7–8):564–573. doi:10.1016/j.marpolbul.2004.03.010 Google Scholar
  82. Jones-Lepp TL, Varner KE, Hilton BA (2001) Speciation and detection of organotins from PVC pipe by micro-liquid chromatographyelectrospray-ion trap mass spectrometry. Appl Organomet Chem 15(12):933–938. doi:10.1002/aoc.246 Google Scholar
  83. Kannan K, Falandysz J (1997) Butyltin residues in sediment, fish, fish-eating birds, harbour porpoise and human tissues from the Polish coast of the Baltic Sea. Mar Pollut Bull 34(3):203–207. doi:10.1016/S0025-326X(96)00146-4 Google Scholar
  84. Kannan K, Tanabe S (2009) Global contamination by organotin compounds. In: Arai T, Harino H, Ohji M, Langston WJ (eds) Ecotoxicology of antifouling biocides. Springer, Tokyo, pp 39–60. doi:10.1007/978-4-431-85709-9_3 Google Scholar
  85. Kannan K, Senthilkumar K, Giesy JP (1999) Occurrence of butyltin compounds in human blood. Environ Sci Technol 33(10):1776–1779. doi:10.1021/es990011w Google Scholar
  86. Kannan K, Takahashi S, Fujiwara N, Mizukawa H, Tanabe S (2010) Organotin compounds, including butyltins and octyltins, in house dust from Albany, New York, USA. Arch Environ Contam Toxicol 58(4):901–907Google Scholar
  87. Keithly JC, Cardwell RD, Henderson DG (1999) Tributyltin in seafood from Asia, Australia, Europe, and North America: assessment of human health risks. Hum Ecol Risk Assessl 5(2):337–354. doi:10.1080/10807039991289473 Google Scholar
  88. Kim GB, Lee JS, Tanabe S, Iwata H, Tatsukawa R, Shimazaki K (1996) Specific accumulation and distribution of butyltin compounds in various organs and tissues of the Steller sea lion (Eumetopias jubatus): comparison with organochlorine accumulation pattern. Mar Pollut Bull 32(7):558–563. doi:10.1016/0025-326X(96)84576-0 Google Scholar
  89. Krupp EM, Merle JK, Haas K, Foote G, Maubec N, Jr Feldmann (2010) Volatilization of organotin species from municipal waste deposits: novel species identification and modeling of atmospheric stability. Environ Sci Technol 45(3):943–950. doi:10.1021/es102512u Google Scholar
  90. Kusk KO, Petersen S (1997) Acute and chronic toxicity of tributyltin and linear alkylbenzene sulfonate to the marine copepod Acartia tonsa. Environ Toxicol Chem 16(8):1629–1633. doi:10.1002/etc.5620160810 Google Scholar
  91. Langston WJ (1990) Toxic effects of metals and the incidence of metal pollution in marine ecosystems. In: Furness RW, Rainbow PS (eds) Heavy metals in the marine environment. CRC Press, Boca Raton, FL, pp 101–122Google Scholar
  92. Lespes G, Marcic C, Heroult J, Le Hecho I, Denaix L (2009) Tributyltin and triphenyltin uptake by lettuce. J Environ Manag 90(1):S60–S68. doi:10.1016/j.jenvman.2008.07.019 Google Scholar
  93. Leung KMY, Grist EPM, Morley NJ, Morritt D, Crane M (2007) Chronic toxicity of tributyltin to development and reproduction of the European freshwater snail Lymnaea stagnalis (L.). Chemosphere 66(7):1358–1366. doi:10.1016/j.chemosphere.2006.06.051 Google Scholar
  94. Liu J-y, Jiang G-b (2002) Survey on the presence of butyltin compounds in Chinese alcoholic beverages, determined by using headspace solid-phase microextraction coupled with gas chromatography-flame photometric detection. J Agric Food Chem 50(23):6683–6687. doi:10.1021/jf025712i Google Scholar
  95. Lo S, Alléra A, Albers P, Heimbrecht J, Jantzen E, Klingmüller D, Steckelbroeck S (2003) Dithioerythritol (DTE) prevents inhibitory effects of triphenyltin (TPT) on the key enzymes of the human sex steroid hormone metabolism. J Steroid Biochem Mol Biol 84(5):569–576. doi:10.1016/S0960-0760(03)00074-8 Google Scholar
  96. Mala N (2008) Toxicity and the cardiovascular activity of organotin compounds: a review. Appl Organomet Chem 22(10):598–612. doi:10.1002/aoc.1436 Google Scholar
  97. Marshall P, Christie C, Dobbs K, Green A, Haynes D, Brodie J, Michalek-Wagner K, Smith A, Storrie J, Turak E (2002) Grounded ship leaves TBT-based antifoulant on the Great Barrier Reef: an overview of the environmental response. Spill Sci Technol Bull 7(5/6):215–221. doi:10.1016/S1353-2561(02)00040-3 Google Scholar
  98. Martins JD, Jurado AS, Moreno AJM, Madeira VMC (2005) Comparative study of tributyltin toxicity on two bacteria of the genus Bacillus. Toxicol In Vitro 19(7):943–949. doi:10.1016/j.tiv.2005.06.019 Google Scholar
  99. Matthiessen P (2013) Detection, monitoring, and control of tributyltin: an almost complete success story. Environ Toxicol Chem 32(3):487–489. doi:10.1002/etc.2108 Google Scholar
  100. McAllister BG, Kime DE (2003) Early life exposure to environmental levels of the aromatase inhibitor tributyltin causes masculinisation and irreversible sperm damage in zebrafish (Danio rerio). Aquat Toxicol 63:309–316. doi:10.1016/S0166-445X(03)00154-1 Google Scholar
  101. Mendo S, Nogueira PR, Ferreira SCN, Silva RG (2003) Tributyltin and triphenyltin toxicity on benthic estuarine bacteria. Fresenius Environ Bull 12(11):1361–1367Google Scholar
  102. Mensink BP, ten Hallers-Tjables CC, Kralt J, Freriks IL, Boon J (1996) Assessment of imposex in the commun whelk, Buccinum undatum (L.) from the Eastern Scheldt, the Netherlands. Mar Environ Res 41(4):315–325. doi:10.1016/0141-1136(95)00022-4 Google Scholar
  103. Michel P, Averty B, Andral B, Chiffoleau JF, Galgani F (2001) TBT along the coast of Corsica (Western Mediterranean): a persistent problem. Mar Pollut Bull 42(11):1128–1132. doi:10.1016/S0025-326X(01)00101-1 Google Scholar
  104. Miller KL, Fernandes TF, Read PA (1999) The recovery of populations of dogwhelks suffering from imposex in the Firth of Forth 1987–1997/98. Environ Pollut 106(2):183–192. doi:10.1016/S0269-7491(99)00076-7 Google Scholar
  105. Minchin D, Oehlmann J, Duggan CB, Stroben E, Keatinge M (1995) Marine TBT antifouling contamination in Ireland, following legislation in 1987. Mar Pollut Bull 30(10):633–639. doi:10.1016/0025-326X(95)00016-G Google Scholar
  106. Minchin D, Stroben E, Oehlmann J, Bauer B, Duggan CB, Keatinge M (1996) Biological indicators used to map organotin contamination in Cork Harbour, Ireland. Mar Pollut Bull 32(2):188–195. doi:10.1016/0025-326X(95)00120-C Google Scholar
  107. Mino Y, Amano F, Yoshioka T, Konishi Y (2008) Determination of organotins in human breast milk by gas chromatography with flame photometric detection. J Health Sci 54(2):224–228. doi:10.1248/jhs.54.224 Google Scholar
  108. Morgan E, Murphy J, Lyons R (1998) Imposex in Nucella lapillus from TBT contamination in South and South-West Wales: a continuing problem around ports. Mar Pollut Bull 36(10):840–843. doi:10.1016/S0025-326X(98)00087-3 Google Scholar
  109. Nagase M, Kondo H, Hasebe K (1995) Determination of tributyltin and triphenyltin compounds in hair and fish using a hydrolysis technique and gas chromatography with flame photometric detection. Analyst 120(7):1923–1926Google Scholar
  110. Negri A, Marshall P (2009) TBT contamination of remote marine environments: ship groundings and ice-breakers as sources of organotins in the Great Barrier Reef and Antarctica. J Environ Manag 90(1):S31–S40. doi:10.1016/j.jenvman.2008.06.009 Google Scholar
  111. Negri AP, Hales LT, Battershill C, Wolff C, Webster NS (2004) TBT contamination identified in Antarctic marine sediments. Mar Pollut Bull 48(11–12):1142–1144. doi:10.1016/j.marpolbul.2004.03.004 Google Scholar
  112. Nielsen JB, Strand J (2002) Butyltin compounds in human liver. Environ Res 88(2):129–133. doi:10.1006/enrs 2001.4321Google Scholar
  113. NRC (2006) Human biomonitoring for environmental chemicals. The National Academies Press, Washington, DC. ISBN: 9780309102728. http://www.nap.edu/openbook.php?record_id=11700
  114. Nudelman MA, Carro C, Nudelman NS (1998) Effects of tin(IV) chloride and of organotin compounds on aquatic micro-organisms. Appl Organomet Chem 12(1):67–75. doi:10.1002/(SICI)1099-0739(199801)12:1%3C67::AID-AOC673%3E3.0.CO;2-%23/abstractGoogle Scholar
  115. Ohtaki K, Aihara M, Takahashi H, Fujita H, Takahashi K, Funabashi T, Hirasawa T, Ikezawa Z (2007) Effects of tributyltin on the emotional behavior of C57BL/6 mice and the development of atopic dermatitis-like lesions in DS-Nh mice. J Dermatol Sci 47(3):209–216. doi:10.1016/j.jdermsci.2007.05.001 Google Scholar
  116. Omae I (2003) Organotin antifouling paints and their alternatives. Appl Organomet Chem 17(2):81–105. doi:10.1002/aoc.396 Google Scholar
  117. Omae I (2006) Chemistry and fate of organotin antifouling biocides in the environment. In: Hutzinger O (ed) Handbook of environmental chemistry, vol 5: Water pollution, vol 5. Springer, Berlin, pp 17–50. doi:10.1007/698-5-048
  118. OSPAR (2003) Joint assessment and monitoring program: guidelines for contaminant-specific biological effects monitoring: Technical annex 3 (TBT-specific biological effects monitoring). Ospar Comission, London. http://www.ospar.org/content/content.asp?menu=00900301400135_000000_000000
  119. OSPAR (2010) Quality status report 2010. OSPAR Commission, London. http://qsr2010.ospar.org/en/media/chapter_pdf/QSR_complete_EN.pdf
  120. Park K, Kim R, Park JJ, Shin HC, Lee JS, Cho HS, Lee YG, Kim J, Kwak IS (2012) Ecotoxicological evaluation of tributyltin toxicity to the equilateral Venus clam, Gomphina veneriformis (Bivalvia: Veneridae). Fish Shellfish Immunol 32(3):426–433. doi:10.1016/j.fsi.2011.11.031 Google Scholar
  121. Peters RJB (2004) Man-made chemicals in human blood (trans: TNO Environment EaPI). TNO-report R 2004/493, vol 2004. Netherlands Organisation for Applied Scientific Research, Apeldoorn, The NetherlandsGoogle Scholar
  122. Petersen S, Gustavson K (1998) Toxic effects of tri-butyl-tin (TBT) on autotrophic pico-, nano-, and microplankton assessed by a size fractionated pollution-induced community tolerance (SF-PICT) concept. Aquat Toxicol 40(2–3):253–264. doi:10.1016/S0166-445X(97)00049-0 Google Scholar
  123. Quevauviller P, Donard OFX, Bruchet A (1991) Leaching of organotin compounds from poly(vinyl chloride) (PVC) material. Appl Organomet Chem 5(2):125–129. doi:10.1002/aoc.590050210 Google Scholar
  124. Qunfang Z, Guibin J, Zhongyang L, Lina L, Chungang Y, Yongning W (2004) Survey of butyltin compounds in 12 types of foods collected in China. Food Addit Contam 21(12):1162–1167. doi:10.1080/02652030400019364 Google Scholar
  125. Rantakokko P, Kuningas T, Saastamoinen K, Vartiainen T (2006) Dietary intake of organotin compounds in Finland: a market-basket study. Food Addit Contam 23(8):749–756. doi:10.1080/02652030600779908 Google Scholar
  126. Rantakokko P, Turunen A, Verkasalo PK, Kiviranta H, Männistö S, Vartiainen T (2008) Blood levels of organotin compounds and their relation to fish consumption in Finland. Sci Total Environ 399(1–3):90–95. doi:10.1016/j.scitotenv.2008.03.017 Google Scholar
  127. Rees CM, Brady BA, Fabris GJ (2001) Incidence of imposex in Thais orbita from Port Phillip Bay (Victoria, Australia), following 10 years of regulation on use of TBT. Mar Pollut Bull 42(10):873–878. doi:10.1016/S0025-326X(01)00041-8 Google Scholar
  128. RPA (2005) Risk assessment studies on targeted consumer applications of certain organotin compounds. Prepared for the European Commission by Risk and Policy Analysts Limited (RPA). Dated September 2005. European Commission, EC. http://ec.europa.eu/enterprise/sectors/chemicals/files/studies/organotins_3rd_report_16_sept_2005_en.pdf
  129. Rudel H (2003) Case study: bioavailability of tin and tin compounds. Ecotoxicol Environ Saf 56(1):180–189. doi:10.1016/S0147-6513(03)00061-7 Google Scholar
  130. Sadiki A-D, Williams DT (1999) A study on organotin levels in Canadian drinking water distributed through PVC pipes. Chemosphere 38(7):1541–1548. doi:10.1016/S0045-6535(98)00374-9 Google Scholar
  131. Sadiki A-I, Williams DT, Carrier R, Thomas B (1996) Pilot study on the contamination of drinking water by organotin compounds from PVC materials. Chemosphere 32(12):2389–2398. doi:10.1016/0045-6535(96)00134-8 Google Scholar
  132. Santillo D, Johnston P, Brigden K (2001) The presence of brominated flame retardants and organotin compounds in dusts collected from Parliament buildings from eight countries. Greenpeace Research Laboratories Technical Note 03/2001. Greenpeace Research Laboratories, Department of Biological Sciences, University of Exeter, Exeter. http://archive.greenpeace.org/toxics/reports/eudust.pdf
  133. Santillo D, Labunska I, Davidson H, Johnston P, Strutt M, Knowles O (2003) Consuming chemicals: hazardous chemicals in house dust as an indicator of chemical exposure in the home: part I—UK. Greenpeace Research Laboratories Technical Note 01/2003. http://www.greenpeace.to/greenpeace/?p=900
  134. Santos MM, ten Hallers-Tjables CC, Santos AM, Vieira N (2002) Imposex in Nucella lapillus, a bioindicator for TBT contamination: re-survey along the Portuguese coast to monitor the effectiveness of EU regulation. J Sea Res 48:217–223. doi:10.1016/S1385-1101(02)00166-1 Google Scholar
  135. Santos MM, Enes P, Reis-Henriques MA, Kuballa J, Castro LFC, Vieira MN (2009) Organotin levels in seafood from Portuguese markets and the risk for consumers. Chemosphere 75:661–666. doi:10.1016/j.chemosphere.2008.12.066 Google Scholar
  136. SCHER (2006) Scientific committee on health and environmental risks (SCHER). Revised assessment of the risks to health and the environment associated with the use of the four organotin compounds TBT, DBT, DOT and TPT. Health and Consumer Protection Directorate. Opinion adopted by the SCHER during the 14th plenary of 30 November 2006. European Commission, EC. http://ec.europa.eu/health/ph_risk/committees/04_scher/docs/scher_o_047.pdf
  137. Schramm KW (2008) Hair-biomonitoring of organic pollutants. Chemosphere 72(8):1103–1111. doi:10.1016/j.chemosphere.2008.04.017 Google Scholar
  138. Sekizawa J, Sutur G, Birnbaum L (2003) Integrated human and ecological risk assessment: a case study of tributyltin and triphenyltin compounds. Hum Ecol Risk Assess 9(1):325–342. doi:10.1080/718990536 Google Scholar
  139. Senthilkumar K, Kannan K, Tanabe S, Prudente M (1998) Butyltin compounds in resident and migrant birds collected from Philippines. Fresenius Environ Bull 7(9–10):561–571Google Scholar
  140. Senthilkumar K, Tanabe S, Kannan K, Subramanian A (1999) Butyltin residues in migratory and resident birds collected from South India. Toxicol Environ Chem 68(1–2):91–104. doi:10.1080/02772249909358648 Google Scholar
  141. Shi HH, Huang CJ, Zhu SX, Yu XJ, Xie WY (2005) Generalized system of imposex and reproductive failure in female gastropods of coastal waters of mainland China. Mar Ecol Prog Ser 304:179–189. doi:10.3354/meps304179 Google Scholar
  142. Shimasaki Y, Kitano T, Oshima Y, Inoue S, Imada N, Honjo T (2003) Tributyltin causes masculinization in fish. Environ Toxicol Chem 22(1):141–144Google Scholar
  143. Sidharthan M, Young KS, Woul LH, Soon PK, Shin HW (2002) TBT toxicity on the marine microalga Nannochloropsis oculata. Mar Pollut Bull 45(1–12):177–180. doi:10.1016/S0025-326X(01)00283-1 Google Scholar
  144. Smith BS (1971) Sexuality in the American mud snail, Nassarius obsoletus Say. Proc Malacol Soc Lond 39:377–378Google Scholar
  145. Smith BS (1981a) Male characteristics on female mud snails caused by antifouling bottom paints. J Appl Toxicol 1(1):22–25. doi:10.1002/jat.2550010106 Google Scholar
  146. Smith BS (1981b) Reproductive anomalies in stenoglossan snails related to pollution from marinas. J Appl Toxicol 1(1):15–21. doi:10.1002/jat.2550010105 Google Scholar
  147. Smith PJ (1996) Selective decline in imposex levels in the dogwhelk Lepsiella scobina following a ban on the use of TBT antifoulants in New Zealand. Mar Pollut Bull 32(4):362–365. doi:10.1016/0025-326X(96)84830-2 Google Scholar
  148. Sonak S, Pangam P, Giriyan A, Hawaldar K (2009) Implications of the ban on organotins for protection of global coastal and marine ecology. J Environ Manag 90(1):S96–S108. doi:10.1016/j.jenvman.2008.08.017 Google Scholar
  149. Sousa A, Génio L, Mendo S, Barroso CM (2005) Comparison of the acute toxicity of tributyltin and copper to veliger larvae of Nassarius reticulatus (L.). Appl Organomet Chem 19(3):324–328. doi:10.1002/aoc.886 Google Scholar
  150. Sousa A, Laranjeiro F, Takahashi S, Tanabe S, Barroso CM (2009) Imposex and organotin prevalence in a European post-legislative scenario: temporal trends from 2003 to 2008. Chemosphere 77(4):566–573. doi:10.1016/j.chemosphere.2009.06.049 Google Scholar
  151. Sousa ACA, Oliveira IB, Laranjeiro F, Takahashi S, Tanabe S, Cunha MR, Barroso CM (2014) Organotin levels in Nazaré canyon (west Iberian Margin, NE Atlantic) and adjacent coastal area. Mar Pollut Bull 64(2):422–426. doi:10.1016/j.marpolbul.2011.11.013 Google Scholar
  152. Strand J, Glahder CM, Asmund G (2006) Imposex occurrence in marine whelks at a military facility in the high Arctic. Environ Pollut 142(1):98–102. doi:10.1016/j.envpol.2005.09.014 Google Scholar
  153. Suzuki Y, Endo Y, Ogawa M, Kim Y, Onda N, Yamanaka K (2008) Development of an analytical method to confirm toxic trimethylated tin in human urine. J Chromatogr B 868(1–2):116–119. doi:10.1016/j.jchromb.2008.04.032 Google Scholar
  154. Takahashi S, Mukai H, Tanabe S, Sakayama K, Miyazaki T, Masuno H (1999) Butyltin residues in livers of humans and wild terrestrial mammals and in plastic products. Environ Pollut 106(2):213–218. doi:10.1016/S0269-7491(99)00068-8 Google Scholar
  155. Takahashi S, Le LTH, Saeki H, Nakatani N, Tanabe S, Miyazaki N, Fujise Y (2000) Accumulation of butyltin compounds and total tin in marine mammals. Water Sci Technol 42(7–8):97–108Google Scholar
  156. Takeuchi I, Takahashi S, Tanabe S, Miyazaki N (2001) Caprella watch: a new approach for monitoring butyltin residues in the ocean. Mar Environ Res 52:91–113. doi:10.1016/S0141-1136(00)00265-8 Google Scholar
  157. Tallmon D (2012) Tributyltin contamination and imposex in Alaska harbors. B Environ Contam Toxicol 88(2):245–249. doi:10.1007/s00128-011-0482-x Google Scholar
  158. Tanabe S, Kunisue T (2007) Persistent organic pollutants in human breast milk from Asian countries. Environ Pollut 146(2):400–413. doi:10.1016/j.envpol.2006.07.003 Google Scholar
  159. Ten Hallers-Tjabbes CC, Kemp JF, Boon JP (1994) Imposex in whelks (Buccinum undatum) from the open North Sea: relation to shipping traffic intensities. Mar Pollut Bull 28(5):311–313. doi:10.1016/0025-326X(94)90156-2 Google Scholar
  160. Trapp S, Ciucani G, Sismilich M (2004) Toxicity of tributyltin to willow trees. Environ Sci Pollut Res 11(5):327–330. doi:10.1065/espr2004.05.202 Google Scholar
  161. Ueno S, Susa N, Furukawa Y, Komatsu Y, Koyama S, Suzuki T (1999) Butyltin and phenyltin compounds in some marine fishery products on the Japanese market. Arch Environ Health 54(1):20–25. doi:10.1080/00039899909602232 Google Scholar
  162. Valla V, Bakola-Christianopoulou M (2007) Chemical aspects of organotin derivatives of beta-diketones, quinonoids, steroids and some currently used drugs: a review of the literature with emphasis on the medicinal potential of organotins. Synth React Inorg Met Org Nano Met Chem 37(7):507–525. doi:10.1080/15533170701558087 Google Scholar
  163. Waldock R, Rees HL, Mattiessen P, Pendle MA (1999) Surveys of the benthic infauna of the Crouch Estuary (UK) in relation to TBT contamination. J Mar Biol Assoc UK 79:225–232. doi:10.1017/S0025315497000258 Google Scholar
  164. Whalen MM, Loganathan BG, Kannan K (1999) Immunotoxicity of environmentally relevant concentrations of butyltins on human natural killer cells in vitro. Environ Res 81(2):108–116. doi:10.1006/enrs 1999.3968Google Scholar
  165. White JS, Tobin JM, Cooney JJ (1999) Organotin compounds and their interactions with microoganisms. Can J Microbiol 45(7):541–554. doi:10.1139/w99-048#.ULK3i4d3aFA Google Scholar
  166. WHO (1990) Environmental health criteria for tributyltin compounds. In: Environmental health criteria, vol 116. World Health Organization, Geneve. http://www.inchem.org/documents/ehc/ehc/ehc116.htm
  167. Wuertz S, Miller CE, Pfister RM, Cooney JJ (1991) Tributyltin-resistant bacteria from estuarine and freshwater sediments. Appl Environ Microbiol 57(10):2783–2789Google Scholar
  168. Yi AX, Leung KMY, Lam MHW, Lee J-S, Giesy JP (2012) Review of measured concentrations of triphenyltin compounds in marine ecosystems and meta-analysis of their risks to humans and the environment. Chemosphere 89(9):1015–1025. doi:10.1016/j.chemosphere.2012.05.080 Google Scholar
  169. Yonezawa T, S-i Hasegawa, Ahn J-Y, Cha B-Y, Teruya T, Hagiwara H, Nagai K, Woo J-T (2007) Tributyltin and triphenyltin inhibit osteoclast differentiation through a retinoic acid receptor-dependent signaling pathway. Biochem Biophys Res Commun 355(1):10–15. doi:10.1016/j.bbrc.2006.12.237 Google Scholar
  170. Yoo CI, Kim Y, Jeong KS, Sim CS, Choy N, Kim J, Eum JB, Nakajima Y, Endo Y, Kim YJ (2007) A case of acute organotin poisoning. J Occup Health 49(4):305–310. doi:10.1539/joh.49.305 Google Scholar
  171. Zachariadis GA, Rosenberg E (2009a) Determination of butyl- and phenyltin compounds in human urine by HS-SPME after derivatization with tetraethylborate and subsequent determination by capillary GC with microwave-induced plasma atomic emission and mass spectrometric detection. Talanta 78(2):570–576. doi:10.1016/j.talanta.2008.12.007 Google Scholar
  172. Zachariadis GA, Rosenberg E (2009b) Speciation of organotin compounds in urine by GC–MIP-AED and GC–MS after ethylation and liquid–liquid extraction. J Chromatogr B 877(11–12):1140–1144. doi:10.1016/j.jchromb.2009.02.065 Google Scholar
  173. Zachariadis GA, Rosenberg E (2012) Speciation analysis of triethyl-lead and tributyl-tin compounds in human urine by liquid–liquid extraction and gas chromatography microwave-induced plasma atomic emission detection. J Sep Sci 35(9):1132–1137. doi:10.1002/jssc.201101041 Google Scholar
  174. Zhang J, Zuo Z, Chen Y, Zhao Y, Hu S, Wang C (2007) Effect of tributyltin on the development of ovary in female cuvier (Sebastiscus marmoratus). Aquat Toxicol 83(3):174–179. doi:10.1016/j.aquatox.2007.03.018 Google Scholar
  175. Zhang J, Zuo Z, Chen R, Chen Y, Wang C (2008) Tributyltin exposure causes brain damage in Sebastiscus marmoratus. Chemosphere 73(3):337–343. doi:10.1016/j.chemosphere.2008.05.072 Google Scholar
  176. Zhang J, Zuo Z, He C, Cai J, Wang Y, Chen Y, Wang C (2009) Effect of tributyltin on testicular development in Sebastiscus marmoratus and the mechanism involved. Environ Toxicol Chem 28(7):1528–1535. doi:10.1897/08-347.1 Google Scholar
  177. Zhang J, Zuo Z, Wang Y, Yu A, Chen Y, Wang C (2011) Tributyltin chloride results in dorsal curvature in embryo development of Sebastiscus marmoratus via apoptosis pathway. Chemosphere 82(3):437–442. doi:10.1016/j.chemosphere.2010.09.057 Google Scholar
  178. Zhang J, Zuo Z, Xiong J, Sun P, Chen Y, Wang C (2013) Tributyltin exposure causes lipotoxicity responses in the ovaries of rockfish, Sebastiscus marmoratus. Chemosphere 90(3):1294–1299. doi:10.1016/j.chemosphere.2012.10.078 Google Scholar
  179. Zhao K, Zhao Y, Ling Y, Chu X (2008) Analysis the pollution level of organotins in aquatic food and port wine. Wei Sheng Yan Jiu 37(3):327–331Google Scholar
  180. Zheng R, Wang C, Zhao Y, Zuo Z, Chen Y (2005) Effect of tributyltin, benzo(a)pyrene and their mixture exposure on the sex hormone levels in gonads of cuvier (Sebastiscus marmoratus). Environ Toxicol Pharmarcol 20(2):361–367. doi:10.1016/j.etap.2005.03.005 Google Scholar
  181. Zuo Z, Cai J, Wang X, Li B, Wang C, Chen Y (2009) Acute administration of tributyltin and trimethyltin modulate glutamate and N-methyl-d-aspartate receptor signaling pathway in Sebastiscus marmoratus. Aquat Toxicol 92(1):44–49. doi:10.1016/j.aquatox.2009.01.008 Google Scholar
  182. Zuo Z, Wang C, Wu M, Wang Y, Chen Y (2012) Exposure to tributyltin and triphenyltin induces DNA damage and alters nucleotide excision repair gene transcription in Sebastiscus marmoratus liver. Aquat Toxicol 122–123:106–112. doi:10.1016/j.aquatox.2012.05.015 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ana C. A. Sousa
    • 1
    • 2
    • 3
  • M. Ramiro Pastorinho
    • 1
    • 2
  • Shin Takahashi
    • 3
  • Shinsuke Tanabe
    • 3
  1. 1.CICS-UBI-Health Sciences Research CentreUniversity of Beira InteriorCovilhãPortugal
  2. 2.Department of Biology and CESAMUniversity of AveiroAveiroPortugal
  3. 3.Center for Marine Environmental Studies (CMES)Ehime UniversityMatsuyamaJapan

Personalised recommendations