Advertisement

Environmental Chemistry Letters

, Volume 12, Issue 1, pp 97–108 | Cite as

Electrochemistry: as cause and cure in water pollution—an overview

  • Subramanyan VasudevanEmail author
  • Mehmet A. Oturan
Review

Abstract

This article reviews both the pollution by the electrochemical industry and the use of electrochemistry to clean water. Main pollutants include Pd, Cd, Ni, Hg and other metals and cyanide as well as organic pollutants. The cause for water pollution by electrochemistry is due to the effluents from different electrochemical industries such as mercury from chlor-alkali industry; lead, cadmium and mercury from battery industry; heavy metals and organic contaminants from electroplating wastes; contaminants from corrosion processes; and persistent organic pollutants from the synthesis and use of pesticides, dyes and pharmaceuticals. Most pollutants can be successfully eliminated or converted to non-toxic materials by methods based on the electrochemical principles. Electrochemical depolluting methods are mainly electrodialysis, electrocoagulation, electroflotation, anodic processes, cathodic processes and electrochemical advanced oxidation processes.

Keywords

Electrochemistry Pollution Industries Electroremediation Electrooxidation 

References

  1. Abuzaid NS, Al-Hamouz Z, Bukhari AA, Essa MH (1999) Electrochemical treatment of nitrite using stainless steel electrodes. Water Air Soil Pollut 109:429–442. doi: 10.1155/2010/232378 Google Scholar
  2. Anglada A, Urtiaga A, Ortiz I (2009) Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J Chem Technol Biotechnol 84:1747–1755. doi: 10.1002/jctb.2214 Google Scholar
  3. Awad YM, Abuzaid NS (1997) Electrochemical treatment of phenolic wastewater: efficiency, design considerations and economic evaluation. J Environ Sci Health A 32:1393–1414. doi: 10.1080/10934529709376617 Google Scholar
  4. Ayoob S, Gupta AK (2006) Fluoride in drinking water: a review on the status and stress effects. Crit Rev Environ Sci Technol 36:433–487. doi: 10.1080/10643380600678112 Google Scholar
  5. Ball P (2008) Water: water—an enduring mystery. Nature 452:291–292. doi: 10.1038/452291a Google Scholar
  6. Bockris JOM (1972) Electrochemistry of cleaner environments. Plenum Press, New YorkGoogle Scholar
  7. Boudenne JL, Cerclier O (1999) Performance of carbon black-slurry electrodes for 4-chlorophenol oxidation. Water Res 33:494–504. doi: 10.1016/S0043-1354(98)00242-5 Google Scholar
  8. Boye B, Dieng MM, Brillas E (2003) Electrochemical degradation of 2,4,5-trichlorophenoxyacetic acid in aqueous medium by peroxi-coagulation. Effect of pH and UV light. Electrochim Acta 48:781–790. doi: 10.1016/S0013-4686(02)00747-8 Google Scholar
  9. Brillas E, Martinez-Huitle CA (eds) (2011) Synthetic diamond films: preparation, electrochemistry, characterization, and applications. Wiley, New Jersey. doi: 10.1002/9781118062364 Google Scholar
  10. Brillas E, Boye B, Banos MA, Calpe JC, Garrido JA (2003) Electrochemical degradation of chlorophenoxy and chlorobenzoic herbicides in acidic aqueous medium by the peroxi-coagulation method. Chemosphere 51:227–235. doi: 10.1016/S0045-6535(02)00836-6 Google Scholar
  11. Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631. doi: 10.1021/cr900136g Google Scholar
  12. Canizares P, Saez C, Lobato J, Rodrigo MA (2004) Electrochemical treatment of 2,4-dinitrophenol aqueous wastes using boron-doped diamond anodes. Electrochim Acta 49:4641–4650. doi: 10.1016/j.electacta.2004.05.019 Google Scholar
  13. Cañizares P, Carmona M, Lobato J, Martínez F, Rodrigo MA (2005) Electrocoagulation of aluminum electrodes in electrocoagulation processes. Ind Eng Chem Res 44:4178–4185. doi: 10.1021/ie048858a Google Scholar
  14. Canizares P, Paz R, Saez C, Rodrigo MA (2008) Electrochemical oxidation of alcohols and carboxylic acids with diamond anodes—a comparison with other advanced oxidation processes. Electrochim Acta 53:2144–2153. doi: 10.1016/j.electacta.2007.09.022 Google Scholar
  15. Chakraborti D, Ghorai SK, Das B, Pal A, Nayak B, Shah BA (2009) Arsenic exposure through groundwater to the rural and urban population in the Allahabad-Kanpur track in the upper Ganga plain. J Environ Monit 11:1455–1459. doi: 10.1039/b914858m Google Scholar
  16. Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38:11–41. doi: 10.1016/j.seppur.2003.10.006 Google Scholar
  17. Chen G, Betterton EA, Arnold RG (1999) Electrolytic oxidation of trichloroethylene using a ceramic anode. J Appl Electrochem 29:961–970. doi: 10.1023/A:1003541706456 Google Scholar
  18. Chen L, Xu Z, Liu M, Huang Y, Fan R, Su Y, Hu G, Peng X, Peng X (2012) Lead exposure assessment from study near a lead-acid battery factory in China. Sci Total Environ 429:191–198. doi: 10.1016/j.scitotenv.2012.04.015 Google Scholar
  19. Chowdhury TR, Basu GK, Mandal BK, Biswas BK, Samanta G, Chowdhury UK, Chanda CR, Lodh D, Roy SL, Saha KC, Roy S, Kabir S, Quamruzzaman Q, Chakraborti D (1999) Arsenic poisoning in the Ganges delta. Nature 401:545–546. doi: 10.1038/44056 Google Scholar
  20. Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39:1857–1862. doi: 10.1016/0013-4686(94)85175-1 Google Scholar
  21. Cossu R, Polcaro AM, Lavagnolo MC, Mascia M, Palmas S, Renoldi F (1998) Electrochemical treatment of landfill leachate: oxidation at Ti/PbO2 andTi/SnO2 anodes. Environ Sci Technol 32:3570–3573. doi: 10.1021/es971094o Google Scholar
  22. Diagne M, Oturan N, Oturan MA (2007) Removal of methyl parathion from water by electrochemically generated Fenton’s reagent. Chemosphere 66:841–848. doi: 10.1016/j.chemosphere.2006.06.033 Google Scholar
  23. Dirany A, Sirés I, Oturan N, Oturan MA (2010) Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere 81:594–602. doi: 10.1016/j.chemosphere.2010.08.032 Google Scholar
  24. Dirany A, Sirés I, Oturan N, Özcan A, Oturan MA (2012) Electrochemical treatment of the antibiotic sulfachloropyridazine: kinetics, reactions pathways, and toxicity evaluation. Environ Sci Technol 46:4074–4082. doi: 10.1021/es204621q Google Scholar
  25. Ditri PA, Ditri FM (1977) Mercury contamination—a human tragedy. John Wiley, UKGoogle Scholar
  26. Drogen J, Passek L (1965) Continuous electrolytic destruction of cyanide waste. Plat Surf Finish 18:310–313Google Scholar
  27. Drogui P, Blais JF, Mercier G (2007) Review of electrochemical technologies for environmental applications. Recent Pat Eng 1:257–272. doi: 10.2174/187221207782411629 Google Scholar
  28. Elfstrom Broo A, Berghult B, Hedberg T (1997) Copper corrosion in drinking water distribution systems—the influence of water quality. Corros Sci 39:1119–1132. doi: 10.1016/S0010-938X(97)00026-7 Google Scholar
  29. Feng J, Hu X, Yue PL, Zhu HY, Lu CQ (2003) Degradation of azo-dye orange II by a photoassisted Fenton reaction. Ind Eng Chem Res 42:2058–2066. doi: 10.1021/ie0207010 Google Scholar
  30. Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc 65:889–910. doi: 10.1039/CT8946500899 Google Scholar
  31. Friberg L (1974) Cadmium in the environment. CRC Press, OhioGoogle Scholar
  32. Gattrell M, Kirk DW (1990) The electrochemical oxidation of aqueous phenol at a glassy carbon electrode. Can J Chem Eng 68:997–1003. doi: 10.1002/cjce.5450680615 Google Scholar
  33. Genders JD, Weinberg NL (1992) Electrochemistry for a cleaner environment. The Electrochemistry Company, Inc., New YorkGoogle Scholar
  34. Glaze WH, Kang JW, Chapin DH (1987) The chemistry of water treatment processes involving ozone, hydrogen peroxide, and ultraviolet radiation. Ozone Sci Eng 9:335–352. doi: 10.1080/01919518708552148 Google Scholar
  35. Guivarch E, Trévin S, Lahitte C, Oturan MA (2003) Degradation of azo dyes in water by electro-Fenton process. Environ Chem Lett 1:39–44. doi: 10.1007/s10311-002-0017-0 Google Scholar
  36. Hofseth CS, Chapman TW (1999) Electrochemical destruction of dilute cyanide by copper‐catalyzed oxidation in a flow‐through porous electrode. J Electrochem Soc 146:199–207. doi: 10.1149/1.1391587 Google Scholar
  37. Holt PK, Barton GW, Mitchell CA (2005) The future for electrocoagulation as a localised water treatment technology. Chemosphere 59:355–367. doi: 10.1016/j.chemosphere.2004.10.023 Google Scholar
  38. Isaac RA, Gil L, Cooperman AN, Hulme K, Eddy B, Ruiz M, Jacobson K, Larson C, Pancorbo OC (1997) Corrosion in drinking water distribution systems: a major contributor of copper and lead to wastewaters and effluents. Environ Sci Technol 31:3198–3203Google Scholar
  39. Kannan N, Sivadurai NS, Berchmans LJ, Vijayavalli R (1995) Removal of phenolic compounds by electrooxidation method. J Environ Sci Health A 30:2185–2203. doi: 10.1080/10934529509376331 Google Scholar
  40. Kobya M, Demirbas E, Dedeli A, Sensoy MT (2010) Treatment of rinse water from zinc phosphate coating by batch and continuous electrocoagulation processes. J Hazard Mater 173:326–334. doi: 10.1016/j.jhazmat.2009.08.092 Google Scholar
  41. Kumar R, Singh RD, Sharma KD (2005) Water resources of India. Curr Sci 89:794–811Google Scholar
  42. Lakshmanan D, Clifford DA, Samanta G (2009) Ferrous and ferric ion generation during iron electrocoagulation. Environ Sci Technol 3:3853–3859. doi: 10.1021/es8036669 Google Scholar
  43. Malato S, Fernandez-Ibanez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59. doi: 10.1016/j.cattod.2009.06.018 Google Scholar
  44. Marincic L, Leitz FB (1978) Electro-oxidation of ammonia in waste water. J Appl Electrochem 8:333–345. doi: 10.1007/BF00612687 Google Scholar
  45. Mark Shannon A, Bohn W, Elimelech M, Georgiadis G, Marinas J, Mayes M (2008) Science and technology for water purification in the coming decades. Nature 452:301–310. doi: 10.1038/nature06599 Google Scholar
  46. Marselli B, Garcia-Gomez J, Michaud PA, Rodrigo MA, Comninellis Ch (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J Electrochem Soc 150:D79–D83. doi: 10.1149/1.1553790 Google Scholar
  47. Martínez-Huitle CA, Brillas E (2008) Electrochemical alternatives for drinking water disinfection. Angew Chem Int Ed 47:1998–2005. doi: 10.1002/anie.200703621 Google Scholar
  48. Montgomery MA, Elimelech M (2007) Water and sanitation in developing countries: including health in the equation. Environ Sci Technol 41:17–24. doi: 10.1021/es072435t Google Scholar
  49. Murphy OJ, Hitchens GD, Kaba L, Verostko CE (1992) Direct electrochemical oxidation of organics for wastewater treatment. Water Res 26:443–451. doi: 10.1016/0043-1354(92)90044-5 Google Scholar
  50. Oturan MA (2000) An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: application to herbicide 2,4-D. J Appl Electrochem 30:475–482Google Scholar
  51. Oturan N, Oturan MA (2005) Degradation of three pesticides used in viticulture by electrogenerated Fenton’s reagent. Agron Sustain Dev 25:267–270. doi: 10.1051/agro:2005005 Google Scholar
  52. Oturan MA, Aaron JJ, Oturan N, Pinson J (1999) Degradation of chlorophenoxyacid herbicides in aqueous media, using a novel electrochemical method. Pestic Sci 55:558–562. doi: 10.1002/(SICI)1096-9063(199905)55:5<558:AID-PS968>3.3.CO;2-8 Google Scholar
  53. Oturan MA, Peiroten J, Chartrin P, Acher AJ (2000) Complete destruction of p-nitrophenol in aqueous medium by electro-Fenton method. Environ Sci Technol 34:3474–3479. doi: 10.1021/es990901b Google Scholar
  54. Oturan MA, Oturan N, Lahitte C, Trevin S (2001) Production of hydroxyl radicals by electrochemically assisted Fenton’s reagent. Application to the mineralization of an organic micropollutant, the pentachlorophenol. J Electroanal Chem 507:96–102. doi: 10.1016/S0022-0728(01)00369-2 Google Scholar
  55. Oturan MA, Sirés I, Oturan N, Perocheau S, Laborde JL, Trevin S (2008) Sonoelectro-Fenton process: a novel hybrid technique for the destruction of organic pollutants in water. J Electroanal Chem 624:329–332. doi: 10.1016/j.jelechem.2008.08.005 Google Scholar
  56. Oturan MA, Edelahi MC, Oturan N, El Kacemi K, Aaron JJ (2010) Kinetics of oxidative degradation/mineralization pathways of the phenylurea herbicides diuron, monuron and fenuron in water during application of the electro-Fenton process. Appl Catal B Environ 97:82–89. doi: 10.1016/j.apcatb.2010.03.026 Google Scholar
  57. Oturan MA, Oturan N, Edelahi MC, Podvorica FI, El Kacemi K (2011) Oxidative degradation of herbicides diuron in aqueous medium by Fenton’s reaction based advanced oxidation processes. Chem Eng J 171:127–135. doi: 10.1016/j.cej.2011.03.072 Google Scholar
  58. Oturan N, Brillas E, Oturan MA (2012) Unprecedented total mineralization of atrazine and cyanuric acid by anodic oxidation and electro-Fenton with a boron-doped diamond anode. Environ Chem Lett 10:165–170. doi: 10.1007/s10311-011-0337-z Google Scholar
  59. Özcan A, Sahin Y, Koparal AS, Oturan MA (2008a) Propham mineralization in aqueous medium by anodic oxidation using boron-doped diamond anode: influence of experimental parameters on degradation kinetics and mineralization efficiency. Water Res 42:2889–2898. doi: 10.1016/j.watres.2008.02.027 Google Scholar
  60. Özcan A, Şahin Y, Oturan MA (2008b) Removal of propham from water by using electro-Fenton technology: kinetics and mechanism. Chemosphere 73:737–744. doi: 10.1016/j.chemosphere.2008.06.027 Google Scholar
  61. Özcan A, Oturan N, Şahin Y, Oturan MA (2010) Electro-Fenton treatment of aqueous Clopyralid solution. Int J Environ Anal Chem 90:478–486. doi: 10.1080/03067310903096011 Google Scholar
  62. Panizza M, Cerisola G (2005) Application of diamond electrodes to electrochemical processes. Electrochim Acta 51:191–199. doi: 10.1016/j.electacta.2005.04.023 Google Scholar
  63. Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569. doi: 10.1021/cr9001319 Google Scholar
  64. Panizza M, Oturan MA (2011) Degradation of Alizarin Red by electro-Fenton process using a graphite-felt cathode. Electrochim Acta 56:7084–7087. doi: 10.1016/j.electacta.2011.05.105 Google Scholar
  65. Pera-Titus M, García-Molina V, Baños MA, Giménez J, Esplugas S (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B Environ 47:219–256. doi: 10.1016/j.apcatb.2003.09.01 Google Scholar
  66. Pletcher D, Walsh FC (1993) Industrial electrochemistry. Blackie, LondonGoogle Scholar
  67. Polcaro MA, Palmas S (1997) Electrochemical oxidation of chlorophenols. Ind Eng Chem Res 36:1791–1798. doi: 10.1021/ie960557g Google Scholar
  68. Pulgarin C, Adler N, Peringer P, Comninellis C (1994) Electrochemical detoxification of a 1,4-benzoquinone solution in wastewater treatment. Water Res 28:887–893. doi: 10.1016/0043-1354(94)90095-7 Google Scholar
  69. Rajalo G, Petrovskaya T (1996) Elective electrochemical oxidation of sulphides in tannery wastewater. Environ Technol 17:605–612. doi: 10.1080/09593331708616424 Google Scholar
  70. Rajeshwar K, Ibanez JG (1997a) Environmental electrochemistry: fundamentals and applications in pollution abatement. Academic Press, LondonGoogle Scholar
  71. Rajeshwar K, Ibanez J (1997b) Environmental electrochemistry. Academic Press, San Diego, CAGoogle Scholar
  72. Ricardo S, Brillas E, Sirés I (2012) Finding the best Fe2+/Cu2+ combination for the solar photoelectro-Fenton treatment of simulated wastewater containing the industrial textile dye Disperse Blue 3. Appl Catal B Environ 115:107–116. doi: 10.1016/j.apcatb.2011.12.026 Google Scholar
  73. Rozhdetsvenska L, Monzie I, Chanel S, Mahmoud A, Muhr L, Grévillot G, Belyakov V, Lapicque F (2001) Ion exchange-assisted electrodialysis for treatment of dilute copper-containing wastes. Chem Ing Tech 73:761–765. doi: 10.1002/1522-2640(200106) Google Scholar
  74. Ruiz EJ, Hernandez-Ramirez A, Peralta-Hernandez JM, Arias C, Brillas E (2011) Application of solarphotoelectro-Fenton technology to azo dyes mineralization: effect of current density, Fe2+ and dye concentrations. Chem Eng J 171:385–392. doi: 10.1016/j.cej.2011.03.004 Google Scholar
  75. Sarkar SKA, Evans GM, Donne SW (2010) Bubble size measurement in electroflotation. Miner Eng 23:1058–1065. doi: 10.1016/j.mineng.2010.08.015 Google Scholar
  76. Sharifian H, Kirk DW (1986) Electrochemical oxidation of phenol. J Electrochem Soc 133:921–924. doi: 10.1149/1.2108763 Google Scholar
  77. Simonsson D (1997) Electrochemistry for a cleaner environment. Chem Soc Rev 26:181–189. doi: 10.1039/CS9972600181 Google Scholar
  78. Sirés I, Oturan N, Guivarch E, Oturan MA (2008) Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton’s reagent at carbon-felt cathode. Chemosphere 72:592–600. doi: 10.1016/j.chemosphere.2008.03.010 Google Scholar
  79. Sirés I, Oturan N, Oturan MA (2010) Electrochemical degradation of β-blockers. Studies on single and multicomponent aqueous solutions. Water Res 44:3109–3120. doi: 10.1016/j.watres.2010.03.005 Google Scholar
  80. Srianujata S (1998) Lead-the toxic metal to stay with human. J Toxicol Sci 23(supl. 2):237–240. doi: 10.2131/jts.23.SupplementII_237 Google Scholar
  81. Strathmann H (1986) Electrodialysis in synthetic membranes: science, engineering, and applications. Reidel Publishing Company, DordrechtGoogle Scholar
  82. Sun Y, Pignatello JJ (1993) Photochemical reactions involved in the total mineralization of 2,4-D by Fe3+/H2O2/UV. Environ Sci Technol 27:304–310. doi: 10.1021/es00039a010 Google Scholar
  83. Szpyrkowicz L, Naumczyk J, Zilio-Grandi F (1994) Application of electrochemical process for tannery wastewater treatment. Toxicol Environ Chem 44:189–202. doi: 10.1080/02772249409358057 Google Scholar
  84. Tang WZ, Huang CP (1996) 2,4-dichlorophenol oxidation kinetics by Fenton’s reagent. Environ Technol 17:1371–1378. doi: 10.1080/09593331708616506 Google Scholar
  85. Trabelsi S, Oturan N, Bellakhal N, Oturan MA (2012) Application of Doehlert matrix to determine the optimal conditions for landfill leachate treatment by electro-Fenton process. J Mater Environ Sci 3:426–433. doi: 10.1016/j.cej.2011.03.072 Google Scholar
  86. Vasudevan S, Lakshmi J (2011) Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water—a novel approach. Sep Purif Technol 80:643–651. doi: 10.1016/j.seppur.2011.06.027 Google Scholar
  87. Vasudevan S, Lakshmi J (2012a) Process conditions and kinetics for the removal of copper from water by electrocoagulation. Environ Eng Sci 29:563–572. doi: 10.1089/ees.2010.0429 Google Scholar
  88. Vasudevan S, Lakshmi J (2012b) Electrochemical removal of boron from water: adsorption and thermodynamic studies. Can J Chem Eng 90:1017–1026. doi: 10.1002/cjce.20585 Google Scholar
  89. Vasudevan S, Jayaraj J, Lakshmi J, Sozhan G (2009a) Removal of iron from drinking water by electrocoagulation: adsorption and kinetics studies. Korean J Chem Eng 26:1058–1064. doi: 10.2478/s11814-009-0176-9 Google Scholar
  90. Vasudevan S, Lakshmi J, Sozhan G (2009b) Studies on a Mg-Al-Zn alloy as an anode for the removal of fluoride from drinking water in an electrocoagulation process. Clean 37:372–378. doi: 10.1002/clen.200900031 Google Scholar
  91. Vasudevan S, Lakshmi J, Vanathi R (2010a) Electrochemical coagulation for chromium removal: process optimization, kinetics, isotherms and sludge characterization. Clean 38:9–16. doi: 10.1002/clen.200900169 Google Scholar
  92. Vasudevan S, Epron F, Lakshmi J, Ravichandran S, Mohan S, Sozhan G (2010b) Removal of NO3 from drinking water by electrocoagulation—an alternate approach. Clean 38:225–229. doi: 10.1002/clen.200900226 Google Scholar
  93. Vasudevan S, Lakshmi S, Sozhan G (2010c) Studies relating to removal of arsenate by electrochemical coagulation: optimization, kinetics, coagulant characterization. Sep Sci Technol 45:1313–1325. doi: 10.1080/01496391003775949 Google Scholar
  94. Vasudevan S, Lakshmi J, Packiyam M (2010d) Electrocoagulation studies on removal of cadmium using magnesium electrode. J Appl Electrochem 40:2023–2032. doi: 10.1007/s10800-010-0182-y Google Scholar
  95. Vasudevan S, Suresh Kannan B, Lakshmi J, Mohanraj S, Sozhan G (2011a) Effects of alternating and direct current in electrocoagulation process on the removal of fluoride from water. J Chem Technol Biotechnol 86:428–436. doi: 10.1002/jctb.2534 Google Scholar
  96. Vasudevan S, Lakshmi J, Sozhan G (2011b) Studies on the Al–Zn–In-alloy as anode material for the removal of chromium from drinking water in electrocoagulation process. Desalination 275:260–268. doi: 10.1016/j.desal.2011.03.011 Google Scholar
  97. Vasudevan S, Lakshmi J, Sozhan G (2011c) Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water. J Hazard Mater 192:26–34. doi: 10.1016/j.jhazmat.2011.04.081 Google Scholar
  98. Vasudevan S, Lakshmi J, Sozhan G (2012) Electrocoagulation studies on the removal of copper from water using mild steel electrode. Water Environ Res 84:209–219. doi: 10.2175/106143011X13225991083640 Google Scholar
  99. Vik EA, Carlson DA, Eikum AS, Gjessin ET (1984) Electrocoagulation of potable water. Water Res 18:1355–1360. doi: 10.1016/0043-1354(84)90003-4 Google Scholar
  100. Wang J, Angnes L, Tobias H, Roesner RA, Hong KC, Glass RS, Kong FM, Pekala RW (1993) Carbon aerogel composite electrodes. Anal Chem 65:2300–2303. doi: 10.1021/ac00065a022 Google Scholar
  101. Yu Peng C, Korshin GV (2011) Speciation of trace inorganic contaminants in corrosion scales and deposits formed in drinking water distribution systems. Water Res 45:5553–5563. doi: 10.1016/j.watres.2011.08.017 Google Scholar
  102. Zhou M, Tan Q, Wang Q, Jiao Y, Oturan N, Oturan MA (2012) Degradation of organics in reverse osmosis concentrate by electro-Fenton process. J Hazard Mater 215–216:287–293. doi: 10.1016/j.jhazmat.2012.02.070 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.CSIR-Central Electrochemical Research InstituteKaraikudiIndia
  2. 2.Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508UPEMLVMarne-la-ValléeFrance

Personalised recommendations