Environmental Chemistry Letters

, Volume 11, Issue 2, pp 143–149 | Cite as

29 % N2O emission reduction from a modelled low-greenhouse gas cropping system during 2009–2011

  • Pietro GoglioEmail author
  • Caroline Colnenne-David
  • Patricia Laville
  • Thierry Doré
  • Benoît Gabrielle
Original Paper


Atmospheric concentration of nitrous oxide (N2O), a greenhouse gas (GHG), is rising largely due to agriculture. At the plot scale, N2O emissions from crops are known to be controlled by local agricultural practices such as fertilisation, tillage and residue management. However, knowledge of greenhouse gas emissions at the scale of the cropping system is scarce, notably because N2O monitoring is time consuming. Strategies to reduce impact of farming on climate should therefore be sought at the cropping system level. Agro-ecosystem models are simple alternative means to estimate N2O emissions. Here, we combined ecosystem modelling and field measurements to assess the effect of agronomic management on N2O emissions. The model was tested with series of daily to monthly N2O emission data. It was then used to evaluate the N2O abatement potential of a low-emission system designed to halve greenhouse gas emissions in comparison with a system with high productivity and environmental performance. We found a 29 % N2O abatement potential for the low-emission system compared with the high-productivity system. Among N2O abatement options, reduction in mineral fertiliser inputs was the most effective.


N2O emissions Cropping systems Agro-ecosystem model Leguminous crops Residues Fertiliser application 



The authors are grateful to Romain Roche for the helpful discussions on the subject, Gilles Grandeau for technical support during field sampling, Céline Decuq for data analysis and Brendan Roth for English proof-reading. Financial support from INRA and the New Energy Strategies Chair of Mines ParisTech (Paris) is also acknowledged.


  1. Abdalla M, Jones M, Ambus P, Williams M (2009) Emissions of nitrous oxide from Irish arable soils: effects of tillage and reduced N input. Nutr Cycl Agroecosyst 86:53–65. doi: 10.1007/s10705-009-9273-8 CrossRefGoogle Scholar
  2. Chirinda N, Kracher D, Lægdsmand M, Porter JR et al (2010) Simulating soil N2O emissions and heterotrophic CO2 respiration in arable systems using FASSET and MoBiLE-DNDC. Plant Soil 343:139–160. doi: 10.1007/s11104-010-0596-7 CrossRefGoogle Scholar
  3. Colnenne-David C, Grandeau G, Doré T (2012) New cropping systems under environmental constraints: first results of ex post assessments. Presented at the ESA 2012 conference, HelsinkiGoogle Scholar
  4. Halvorson AD, Del Grosso SJ, Reule CA (2008) Nitrogen, tillage, and crop rotation effects on nitrous oxide emissions from irrigated cropping systems. J Environ Qual 37:1337–1344. doi: 10.2134/jeq2007.0268 CrossRefGoogle Scholar
  5. Hastings AF, Wattenbach M, Eugster W, Li C et al (2010) Uncertainty propagation in soil greenhouse gas emission models: an experiment using the DNDC model and at the Oensingen cropland site. Agr Ecosyst Environ 136:97–110. doi: 10.1016/j.agee.2009.11.016 CrossRefGoogle Scholar
  6. Houghton J, Ding Y, Griggs D, Noguer M et al (2001) Climate change 2001: the scientific basis: contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  7. Jarecki MK, Parkin TB, Chan ASK, Hatfield JL et al (2008) Comparison of DAYCENT-simulated and measured nitrous oxide emissions from a corn field. J Environ Qual 37:1685–1690. doi: 10.2134/jeq2007.0614 CrossRefGoogle Scholar
  8. Kariyapperuma K, Wagner-Riddle C, Furon AC, Li C (2011) Assessing spring thaw nitrous oxide fluxes simulated by the DNDC model for agricultural soils. Soil Sci Soc Am J 75:678–690CrossRefGoogle Scholar
  9. Kong AYY, Fonte SJ, van Kessel C, Six J (2009) Transitioning from standard to minimum tillage: trade-offs between soil organic matter stabilization, nitrous oxide emissions, and N availability in irrigated cropping systems. Soil Till Res 104:256–262. doi: 10.1016/j.still.2009.03.004 CrossRefGoogle Scholar
  10. Laville P, Lehuger S, Loubet B, Chaumartin F et al (2011) Effect of management, climate and soil conditions on N2O and NO emissions from an arable crop rotation using high temporal resolution measurements. Agr Forest Meteorol 151:228–240. doi: 10.1016/j.agrformet.2010.10.008 CrossRefGoogle Scholar
  11. Lehuger S, Gabrielle B, van Oijen M, Makowski D et al (2009) Bayesian calibration of the nitrous oxide emission module of an agro-ecosystem model. Agr Ecosys Environ 133:208–222. doi: 10.1016/j.agee.2009.04.022 CrossRefGoogle Scholar
  12. Lehuger S, Gabrielle B, Laville P, Lamboni M et al (2011) Predicting and mitigating the net greenhouse gas emissions of crop rotations in Western Europe. Agr Forest Meteorol 151:1654–1671. doi: 10.1016/j.agrformet.2011.07.002 CrossRefGoogle Scholar
  13. Li Y, Barton L, Chen D (2012) Simulating response of N2O emissions to fertiliser N application and climatic variability from a rain-fed and wheat-cropped soil in Western Australia. J Food Sci Agri 92:1130–1143. doi: 10.1002/jsfa.4643 CrossRefGoogle Scholar
  14. Ludwig B, Jäger N, Priesack E, Flessa H (2011) Application of the DNDC model to predict N2O emissions from sandy arable soils with differing fertilization in a long-term experiment. J Plant Nutr Soil Sci 174:350–358. doi: 10.1002/jpln.201000040 CrossRefGoogle Scholar
  15. Nassi o Di Nasso N, Bosco S, Di Bene C, Coli A et al (2011) Energy efficiency in long-term Mediterranean cropping systems with different management intensities. Energy 36:1924–1930. doi: 10.1016/ CrossRefGoogle Scholar
  16. Pappa VA, Rees RM, Walker RL, Baddeley JA et al (2011) Nitrous oxide emissions and nitrate leaching in an arable rotation resulting from the presence of an intercrop. Agric Ecosys Environ 141:153–161. doi: 10.1016/j.agee.2011.02.025 CrossRefGoogle Scholar
  17. Pedersen AR, Petersen SO, Schelde K (2010) A comprehensive approach to soil-atmosphere trace-gas flux estimation with static chambers. Eur J Soil Sci 61:888–902. doi: 10.1111/j.1365-2389.2010.01291.x CrossRefGoogle Scholar
  18. Rochette P, Eriksen-Hamel NS (2008) Chamber measurements of soil nitrous oxide flux: are absolute values reliable? Soil Sci Soc Am J 72:331–342. doi: 10.2136/sssaj2007.0215 CrossRefGoogle Scholar
  19. Ruser R, Flessa H, Schilling R, Beese F et al (2001) Effect of crop-specific field management and N fertilization on N2O emissions from a fine-loamy soil. Nutr Cycl Agroecosyst 59:177–191CrossRefGoogle Scholar
  20. Saggar S (2010) Estimation of nitrous oxide emission from ecosystems and its mitigation technologies. Agr Ecosyst Environ 136:189–191. doi: 10.1016/j.agee.2010.01.007 CrossRefGoogle Scholar
  21. Smith WN, Grant BB, Desjardins L, Rochette P et al (2008) Evaluation of two process-based models to estimate soil N2O emissions in Eastern Canada. Can J Soil Sci 88:251–260CrossRefGoogle Scholar
  22. Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr Cycl Agroecosyst 74:207–228. doi: 10.1007/s10705-006-9000-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pietro Goglio
    • 1
    • 2
    Email author
  • Caroline Colnenne-David
    • 3
    • 4
  • Patricia Laville
    • 1
  • Thierry Doré
    • 3
    • 4
  • Benoît Gabrielle
    • 1
  1. 1.UMR INRA-AgroParisTech EGC Environnement et Grandes CulturesThiverval-GrignonFrance
  2. 2.Landlab, Institute of Life Sciences, Scuola Superiore Sant’AnnaPisaItaly
  3. 3.INRAThiverval-GrignonFrance
  4. 4.AgroParisTechThiverval-GrignonFrance

Personalised recommendations