Environmental Chemistry Letters

, Volume 10, Issue 4, pp 349–361 | Cite as

Ecotoxicity of polycyclic aromatic hydrocarbons, aromatic amines, and nitroarenes through molecular properties

  • Sergio Manzetti


Air, marine, and terrestrial pollution are continuously critical issues to be solved in environmental sciences. Particularly with the recent disaster in the Mexico Gulf and the risk of oil spills from the continuous offshore drilling activities in the North Sea, ecotoxicological profiling requires great attention. Fjord ecosystems are particularly neglected marine ecosystems, which require better surveillance and ecotoxicological profiling. In this context, this study focuses on exploring three potential indicators for aquatic stress [polycyclic aromatic hydrocarbons (PAHs), aromatic amines (AAs), and nitroarenes (NAs)] by the study of their molecular and sub-molecular properties. The results show that the aromatic amine, 4-aminobiphenyl, gains a particularly reactive electronic potential, which can be summarized as a large change in LUMO+2 and HOMO−1 electron orbitals upon metabolic activation in the organism. This change in orbitals increases the overall electrostatic energy of the molecule, inducing a high affinity for DNA-adduct formation. Electronic analysis on nitroarenes shows in addition why 1,6-dinitropyrene is more stable than 1,8-dinitropyrene, and how the electrons favor nitrenium activation on the 6th and 8th carbon. Further analysis shows also that PAHs have a present correlation with hormonal similarity, and that their resemblance to estrogen can be correlated to mutagenicity, contributing to increased ecotoxicity. The electronic analysis of these three types of fossil pollutants shows how their toxicity is exerted from the electronic level and which structural features that determine the level of reactivity and toxicity. The summation of the background and electronic properties of these molecular toxins elucidates that PAHs, aromatic amines, and nitroarenes are all of equal importance as stress indicators for fjord systems, with particular emphasis on PAHs, which also exert hormonal structural similarities as a probable base of their carcinogenic mechanisms.


Fjord pollution Indicators Mutagens Carcinogens Polycyclic aromatic hydrocarbons Nitroarenes Aromatic amines Electronic properties 



The author would like to thank Prof. David van Der Spoel at the Biomedical Centre of the University of Uppsala, in providing software and computational power to perform quantum chemical studies in a joint collaboration.


  1. Anderson LM, Ruskie S, Carter J, Pittinger S, Kovatch RM, Riggs CW (1995) Fetal mouse susceptibility to transplacental carcinogenesis: differential influence of Ah receptor phenotype on effects of 3-methylcholanthrene,12-dimethylbenz[a]anthracene, and benzo[a]pyrene. Pharmacogenetics 5:364–372CrossRefGoogle Scholar
  2. ATSDR. Agency for Toxic Substances and Disease Registry.
  3. Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Cogliano V (2008) Carcinogenicity of some aromatic amines, organic dyes, and related exposures. Lancet Oncol 9:322–323CrossRefGoogle Scholar
  4. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98Google Scholar
  5. Brightwell J, Fouillet X, Cassano-Zoppi AL, Bernstein D, Crawley F, Duchosal F, Gatz R, Perczel S, Pfeifer H (1989) Tumours of the respiratory tract in rats and hamsters following chronic inhalation of engine exhaust emissions. J Appl Toxicol 9:23–31CrossRefGoogle Scholar
  6. Brightwell J, Fouillet X, Cassano-Zoppi AL, Gatz R, Duchosal F (1986) Neoplastic and functional changes in rodents after chronic inhalation of engine exhaust emissions. Dev Toxicol Environ Sci 13:471–485Google Scholar
  7. Carroll CC, Warnakulasuriyarachchi D, Nokhbeh MR, Lambert IB (2002) Salmonella typhimurium mutagenicity tester strains that overexpress oxygen-insensitive nitroreductases nfsA and nfsB. Mutat Res 501:79–98CrossRefGoogle Scholar
  8. Carvalho M, Sorrilha AEPM, Rodrigues JAR (1999) Reaction of aromatic azides with strong acids: formation of fused nitrogen heterocycles and arylamines. Braz Chem Soc 10:415–420CrossRefGoogle Scholar
  9. Cavalieri EL, Rogan EG (1995) Central role of radical cations in metabolic activation of polycyclic aromatic hydrocarbons. Xenobiotica 25(7):677–688CrossRefGoogle Scholar
  10. Charles GD, Bartels MJ, Zacharewski TR, Gollapudi BB, Freshour NL, Carney EW (2000) Activity of benzo[a]pyrene and its hydroxylated metabolites in an estrogen receptor-alpha reporter gene assay. Toxicol Sci 55:320–326CrossRefGoogle Scholar
  11. Chaudhary P, Sharma R, Singh SB, Nain L (2011) Bioremediation of PAH by streptomyces sp. Bull Environ Contam Toxicol 86:268–271CrossRefGoogle Scholar
  12. Chen J, Yu H, Liu Y, Jiang W, Jiang J, Zhang J, Hua Z (2004) Ecotoxicological evaluation of 4-aminobiphenyl using a test battery. Ecotoxicol Environ Saf 58:104–109CrossRefGoogle Scholar
  13. Chen Z, King RB (2005) Spherical aromaticity: recent work on fullerenes, polyhedral boranes, and related structures. Chem Rev 105:3613–3642CrossRefGoogle Scholar
  14. Chiron S, Barbati S, De Méo M, Botta A (2007) In vitro synthesis of 1,N6-etheno-2′-deoxyadenosine and 1,N2-etheno-2′-deoxyguanosine by 2,4-dinitrophenol and 1,3-dinitropyrene in presence of a bacterial nitroreductase. Environ Toxicol 22:222–227CrossRefGoogle Scholar
  15. Culp SJ, Gaylor DW, Sheldon WG, Goldstein LS, Beland FA (1998) A comparison of the tumors induced by coal tar and benzo[a]pyrene in a 2-year bioassay. Carcinogenesis 19:117–124CrossRefGoogle Scholar
  16. Deblonde T, Cossu-Leguille C, Hartemann P (2011) Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health 214:442–448CrossRefGoogle Scholar
  17. Deepthike HU, Tecon R, Van Kooten G, Van der Meer JR, Harms H, Wells M, Short J (2009) Unlike PAHs from Exxon Valdez crude oil, PAHs from Gulf of Alaska coals are not readily bioavailable. Environ Sci Technol 43:5864–5870CrossRefGoogle Scholar
  18. Dipple A, Pigott MA, Agarwal SK, Yagi H, Sayer JM, Jerina DM (1987) Optically active benzo[c]phenanthrene diol epoxides bind extensively to adenine in DNA. Nature 327:535–536CrossRefGoogle Scholar
  19. Edwards NT (1983) Polycyclic aromatic hydrocarbons (PAHs) in the terrestrial environment—a review. J Environ Qual 12:427–441CrossRefGoogle Scholar
  20. EU Directive 200006/CE. EU framework. European UnionGoogle Scholar
  21. Famulok M (2009) Formation of N-(deoxyguanosin-8-yl)aniline in the in vitro reaction of N-acetoxyaniline with deoxyguanosine and DNA. Angew Chem Int Ed Engl 28:468–469CrossRefGoogle Scholar
  22. Frisch J, Trucks GW, Schlegel HB, Scuseria GE, Rob MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian, Inc., Wallingford, CTGoogle Scholar
  23. Fu J, Suuberg EM (2012) Thermochemical properties and phase behavior of halogenated polycyclic aromatic hydrocarbons. Environ Toxicol Chem 31:486–493CrossRefGoogle Scholar
  24. Gamper HB, Straub K, Calvin M, Bartholomew JC (1980) DNA alkylation and unwinding induced by benzo[a]pyrene diol epoxide: modulation by ionic strength and superhelicity. Proc Natl Acad Sci USA 77:2000–2004CrossRefGoogle Scholar
  25. Gaspari L, Chang SS, Santella RM, Garte S, Pedotti P, Taioli E (2003) Polycyclic aromatic hydrocarbon-DNA adducts in human sperm as a marker of DNA damage and infertility. Mutat Res 535(2):155–160CrossRefGoogle Scholar
  26. Glatt H, Piée A, Pauly K, Steinbrecher T, Schrode R, Oesch F, Seidel A (1991) Fjord- and bay-region diol-epoxides investigated for stability, SOS induction in Escherichia coli, and mutagenicity in Salmonella typhimurium and mammalian cells. Cancer Res 51(6):1659–1667Google Scholar
  27. Gohlke JM, Doke D, Tipre M, Leader M, Fitzgerald T (2011) A review of seafood safety after the deepwater horizon blowout. Environ Health Perspect 119:1062–1069CrossRefGoogle Scholar
  28. Goldstein LS, Weyand EH, Safe S, Steinberg M, Culp SJ, Gaylor DW, Beland FA, Rodriguez LV (1998) Tumors and DNA adducts in mice exposed to benzo[a]pyrene and coal tars: implications for risk assessment. Environ Health Perspect 106:1325–1330CrossRefGoogle Scholar
  29. Grosse Y, Baan R, Straif K, Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Galichet L, Cogliano V, WHO International Agency for Research on Cancer Monograph Working Group (2009) A review of human carcinogens—part A: pharmaceuticals. Lancet OncolGoogle Scholar
  30. Guengerich FP, Shimada T, Iwasaki M, Martin MV (1990) Activation of mutagens by human cytochrome P-450 enzymes. Prog Clin Biol Res 340B:87–96Google Scholar
  31. Hajos AK, Winston GW (1991) Dinitropyrene nitroreductase activity of purified NAD(P)H-quinone oxidoreductase: role in rat liver cytosol and induction by Aroclor-1254 pretreatment. Carcinogenesis 12:697–702CrossRefGoogle Scholar
  32. Hankinson O (1995) The aryl hydrocarbon receptor complex. Annu Rev Pharmacol Toxicol 35:307–340CrossRefGoogle Scholar
  33. Hardin JA, Hinoshita F, Sherr DH (1992) Mechanisms by which benzo[a]pyrene, an environmental carcinogen, suppresses B cell lymphopoiesis. Toxicol Appl Pharmacol 117(2):155–164CrossRefGoogle Scholar
  34. Hashimoto AH, Amanuma K, Hiyoshi K, Takano H, Masumura K, Nohmi T, Aoki Y (2006) In vivo mutagenesis in the lungs of gpt-delta transgenic mice treated intratracheally with 1,6-dinitropyrene. Environ Mol Mutagen 47:277–283CrossRefGoogle Scholar
  35. Hirano M, Tanaka S, Asami O (2011) Classification of polycyclic aromatic hydrocarbons based on mutagenicity in lung tissue through DNA microarray. Environ Toxicol. doi: 10.1002/tox.20761 Google Scholar
  36. Hjetland GB (2011) Release of 1, 4 tons environmental toxins in Årdalsfjord. Sogn Avis. Norwegian, 16 sept 2011Google Scholar
  37. Hoffmann D, Djordjevic MV, Hoffmann I (1997) The changing cigarette. Prev Med 26(427):434Google Scholar
  38. Holme JA, Gorria M, Arlt VM, Ovrebø S, Solhaug A, Tekpli X, Landvik NE, Huc L, Fardel O, Lagadic-Gossmann D (2007) Different mechanisms involved in apoptosis following exposure to benzo[a]pyrene in F258 and Hepa1c1c7 cells. Chem Biol Interact 167:41–55CrossRefGoogle Scholar
  39. Hordaland (2011) Mercury above the EU limit of Hardanger-fish. [Norwegian]. 13 Jan 2011
  40. Horel A, Mortazavi B, Sobecky PA (2012) Responses of microbial community from northern Gulf of Mexico sandy sediments following exposure to deepwater horizon crude oil. Environ Toxicol Chem. doi: 10.1002/etc.1770 Google Scholar
  41. Huberman E, Sachs L, Yang SK, Gelboin V (1976) Identification of mutagenic metabolites of benzo(a)pyrene in mammalian cells. Proc Natl Acad Sci USA 73:607–611CrossRefGoogle Scholar
  42. Ilett KF, Reeves PT, Minchin RF, Kinnear BF, Watson HF, Kadlubar FF (1991) Distribution of acetyltransferase activities in the intestines of rapid and slow acetylator rabbits. Carcinogenesis 12:1465–1469CrossRefGoogle Scholar
  43. Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84CrossRefGoogle Scholar
  44. Jung JH, Kim M, Yim UH, Ha SY, An JG, Won JH, Han GM, Kim NS, Addison RF, Shim WJ (2011) Biomarker responses in pelagic and benthic fish over 1 year following the Hebei Spirit oil spill (Taean, Korea). Mar Pollut Bull 62:1859–1866CrossRefGoogle Scholar
  45. Karle IL, Yagi H, Sayer JM, Jerina DM (2004) Crystal and molecular structure of a benzo[a]pyrene 7,8-diol 9,10-epoxide N2-deoxyguanosine adduct: absolute configuration and conformation. Proc Natl Acad Sci USA 101(6):1433–1438CrossRefGoogle Scholar
  46. Kawakami T, Isama K, Nakashima H, Tsuchiya T, Matsuoka A (2010) Analysis of primary aromatic amines originated from azo dyes in commercial textile products in Japan. J Environ Sci Health A Tox Hazard Subst Environ Eng 45:1281–1295CrossRefGoogle Scholar
  47. Lei AP, Wong YS, Tam NF (2002) Removal of pyrene by different microalgal species. Water Sci Technol 46:195–201Google Scholar
  48. Levin W, Wood A, Chang R, Ryan D, Thomas P, Yagi H, Thakker D, Vyas K, Boyd C, Chu SY, Conney A, Jerina D (1982) Oxidative metabolism of polycyclic aromatic hydrocarbons to ultimate carcinogens. Drug Metab Rev 13:555–580CrossRefGoogle Scholar
  49. Li Y, Wang Y, Ding A, Liu X, Guo J, Li P, Sun M, Ge F, Wang W (2011) Impact of long-range transport and under-cloud scavenging on precipitation chemistry in East China. Environ Sci Pollut Res Int 18:1544–1554Google Scholar
  50. Lilla C, Risch A, Kropp S, Chang-Claude J (2005) SULT1A1 genotype, active and passive smoking, and breast cancer risk by age 50 years in a German case-control study. Breast Cancer Res 7:R229–R237CrossRefGoogle Scholar
  51. Lin S, Lin CJ, Hsieh DP, Li LA (2012) ERα phenotype, estrogen level, and benzo[a]pyrene exposure modulate tumor growth and metabolism of lung adenocarcinoma cells. Lung Cancern 75:285–292Google Scholar
  52. Luoma SN, van Green A (1998) Metal uptake by phytoplankton during a bloom in South San Francisco Bay: implications for metal cycling in estuaries. Limnol Oceanogr 43(S):1007–1101CrossRefGoogle Scholar
  53. Manzetti S, Stenersen JH (2010) A critical view of the environmental condition of the Sognefjord. Mar Pollut Bull 60:2167–2174CrossRefGoogle Scholar
  54. Manzetti S (2011) Research and Environmental Protection of Norwegian fjords: a standstill. J Mar Sci Res Dev 1(S2-001)Google Scholar
  55. Manzetti S, Andersen O, Czerwinski J (2011) Biodiesel, fossil diesel and their blends: chemical and toxicological properties. In: Marchetti JM, Fang Z (eds) Biodiesel: blends, properties and applications. Nova Science Publishers, Inc. ISBN 978-1-61324-660-3Google Scholar
  56. Marques MM (1996) Synthesis, characterization, and conformational analysis of DNA adducts from methylated anilines present in tobacco smoke. Chem Res Toxicol 9:99–108CrossRefGoogle Scholar
  57. McCoy EC, Rosenkranz EJ, Rosenkranz HS, Mermelstein R (1981) Nitrated fluorene derivatives are potent frameshift mutagens. Mutat Res 90:11–20CrossRefGoogle Scholar
  58. Mermelstein R, Kiriazides DK, Butler M, McCoy EC, Rosenkranz HS (1981) The extraordinary mutagenicity of nitropyrenes in bacteria. Mutat Res 89:187–196CrossRefGoogle Scholar
  59. Murray LR (2003) Biotransformation of arsenate to arsenosugars by Chlorella vulgaris. Appl Organomet Chem 17:669–674CrossRefGoogle Scholar
  60. Nakagawa R, Kitamori S, Horikawa K, Nakashima K, Tokiwa H (1983) Identification of dinitropyrenes in diesel-exhaust particles. Their probable presence as the major mutagens. Mutat Res 124:201–211CrossRefGoogle Scholar
  61. Naslund I, Rubio CA, Auer GU (1987) Nuclear DNA changes during pathogenesis of squamous carcinoma of the cervix in 3,4-benzopyrene-treated mice. Anal Quant Cytol Histol 9:411–418Google Scholar
  62. National Toxicology Program (2011) NTP 12th report on carcinogens. Rep Carcinog 12:iii–499Google Scholar
  63. Nebert DW, Dalton TP, Okey AB, Gonzalez FJ (2004) Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem 279:23847–23850CrossRefGoogle Scholar
  64. Neff JM, Page DS, Boehm PD (2011) Exposure of sea otters and harlequin ducks in Prince William Sound, Alaska, USA, to shoreline oil residues 20 years after the Exxon Valdez oil spill. Environ Toxicol Chem 30:659–672CrossRefGoogle Scholar
  65. Nesje A, Whillans IM (1994) Erosion of Sognefjord, Norway. Geomorphology 9:33–45CrossRefGoogle Scholar
  66. Nordenskjöld M, Söderhäll S, Moldéus P, Jernström B (1978) Differences in the repair of DNA strand breaks induced by 9-hydroxy-benzo(a)pyrene and trans-7,8-dihydro-7,8-dihydroxy-benzo(a)pyrene in cultured human fibroblasts. Biochem Biophys Res Commun 85:1535–1541CrossRefGoogle Scholar
  67. Nordenskjöld M, Svensson SA, Jernström B, Moldéus P, Dock L, Söderhäll S (1981) Studies on the in vitro transfer of DNA binding benzo[a]pyrene metabolites from rat hepatocytes to human fibroblasts. Carcinogenesis 2:1151–1160CrossRefGoogle Scholar
  68. NRC (2009) Science and decisions: advancing risk assessments. committee on improving risk analysis approaches used by the U.S. EPA, Board on Environmental Studies and Toxicology, Division on Earth and Life Studies. The National Academies Press, Washington, DCGoogle Scholar
  69. Okay OS, Donkin P, Peters LD, Livingstone DR (2000) The role of algae (Isochrysis galbana) enrichment on the bioaccumulation of benzo[a]pyrene and its effects on the blue mussel Mytilus edulis. Environ Pollut 110:103–113CrossRefGoogle Scholar
  70. Pandey AK, Chaudhary P, Singh SB, Arora A, Kumar K, Chaudhry S, Nain L (2012) Deciphering the traits associated with PAH degradation by a novel Serratia marcesencs L-11 strain. J Environ Sci Health A Tox Hazard Subst Environ Eng 47:755–765Google Scholar
  71. Patellani E, Fuortes C, Guzzardella C (1951) Experimental research on the carcinogenic power of aromatic amines. Tumori 37:492–504Google Scholar
  72. Patil AJ, Gramajo AL, Sharma A, Chwa M, Seigel GM, Kuppermann BD, Kenney MC (2009) Effects of benzo(e)pyrene on the retinal neurosensory cells and human microvascular endothelial cells in vitro. Curr Eye Res 34:672–682CrossRefGoogle Scholar
  73. Perchermeier MM, Kiefer F, Wiebel FJ (1994) Toxicity of monocyclic and polycyclic nitroaromatic compounds in a panel of mammalian test cell lines. Toxicol Lett 72:53–57CrossRefGoogle Scholar
  74. Platt KL, Degenhardt C, Grupe S, Frank H, Seidel A (2002) Microsomal activation of dibenzo[def,mno]chrysene (anthanthrene), a hexacyclic aromatic hydrocarbon without a bay-region, to mutagenic metabolites. Chem Res Toxicol 15(3):332–342CrossRefGoogle Scholar
  75. Raghavachari K, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. 20. Basis set for correlated wave-functions. J Chem Phys 72:650–654CrossRefGoogle Scholar
  76. Randic M (2003) Aromaticity of polycyclic conjugated hydrocarbons. Chem Rev 103:3449–3605CrossRefGoogle Scholar
  77. Sinkkonen S, Paasivirta J (2010) Degradation half-life times of PCDDs, PCDFs and PCBs for environmental fate. Chemosphere 40:943–949CrossRefGoogle Scholar
  78. Skipper PL, Kim MY, Sun HL, Wogan GN, Tannenbaum SR (2010) Monocyclic aromatic amines as potential human carcinogens: old is new again. Carcinogenesis 31:50–58CrossRefGoogle Scholar
  79. Smith BA, Manjanatha MG, Pogribny IP, Mittelstaedt RA, Chen T, Fullerton NF, Beland FA, Heflich RH (1997) Analysis of mutations in the K-ras and p53 genes of lung tumors and in the hprt gene of 6-thioguanine-resistant T-lymphocytes from rats treated with 1,6-dinitropyrene. Mutat Res 379:61–68CrossRefGoogle Scholar
  80. Song X, Xu Y, Li G, Zhang Y, Huang T, Hu Z (2011) Isolation, characterization of Rhodococcus sp. P14 capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons and aliphatic hydrocarbons. Mar Pollut Bull 62:2122–2128CrossRefGoogle Scholar
  81. Stansbury KH, Flesher JW, Gupta RC (1994) Mechanism of aralkyl-DNA adduct formation from benzo[a]pyrene in vivo. Chem Res Toxicol 7(2):254–259CrossRefGoogle Scholar
  82. Sugimura T, Takayama S (1983) Biological actions of nitroarenes in short-term tests on Salmonella, cultured mammalian cells and cultured human tracheal tissues: possible basis for regulatory control. Environ Health Perspect 47:171–176CrossRefGoogle Scholar
  83. Tahara I, Kataoka K, Kinouchi T, Ohnishi Y (1995) Stability of 1-nitropyrene and 1,6-dinitropyrene in environmental water samples and soil suspensions. Mutat Res 343:109–119CrossRefGoogle Scholar
  84. Thyssen J, Althoff J, Kimmerle G, Mohr U (1981) Inhalation studies with benzo[a]pyrene in Syrian golden-hamsters. J Natl Cancer Inst 66:575–577Google Scholar
  85. Tokiwa H, Otofuji T, Horikawa K, Kitamori S, Otsuka H, Manabe Y, Kinouchi T, Ohnishi Y (1984) 1,6-Dinitropyrene: mutagenicity in Salmonella and carcinogenicity in BALB/c mice. J Natl Cancer Inst 73:1359–1363Google Scholar
  86. Torres MA, Barros MP, Campos SC, Pinto E, Rajamani S, Sayre RT, Colepicolo P (2008) Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol Environ Saf 71:1–15CrossRefGoogle Scholar
  87. Toth B (1980) Tumorigenesis by benzo[a]pyrene administered intracolonically. Oncology 37:77–82CrossRefGoogle Scholar
  88. Tsuchiya Y, Nakajima M, Yokoi T (2005) Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett 227:115–124CrossRefGoogle Scholar
  89. Vainio MJ, Puranen JS, Johnson MS (2009) ShaEP: molecular overlay based on shape and electrostatic potential. J Chem Inf Model 49:492–502CrossRefGoogle Scholar
  90. Vepachedu SR, Ya N, Yagi H, Sayer JM, Jerina DM (2000) Marked differences in base selectivity between DNA and the free nucleotides upon adduct formation from Bay- and Fjord-region diol epoxides. Chem Res Toxicol 13:883–890. Erratum in: Chem Res Toxicol 2001, 14;148Google Scholar
  91. Vidal M, Domínguez J, Luís A (2010) Spatial and temporal patterns of polycyclic aromatic hydrocarbons (PAHs) in eggs of a coastal bird from northwestern Iberia after a major oil spill. Sci Total Environ 409:2668–2673CrossRefGoogle Scholar
  92. Wang C, Feng Y, Sun Q, Zhao S, Gao P, Li BL (2012) A multimedia fate model to evaluate the fate of PAHs in Songhua River, China. Environ Pollut 164:81–88CrossRefGoogle Scholar
  93. Wayland M, Headley JV, Peru KM, Crosley R, Brownlee BG (2008) Levels of polycyclic aromatic hydrocarbons and dibenzothiophenes in wetland sediments and aquatic insects in the oil sands area of northeastern Alberta, Canada. Environ Monit Assess 136:167–182CrossRefGoogle Scholar
  94. Xia Y, Zhu P, Han Y, Lu C, Wang S, Gu A, Fu G, Zhao R, Song L, Wang X (2009) Urinary metabolites of polycyclic aromatic hydrocarbons in relation to idiopathic male infertility. Hum Reprod 24(5):1067–1074CrossRefGoogle Scholar
  95. Yan J, Cheng SP, Zhang XX, Shi L, Zhu J (2004) Effect of four metals on the degradation of purified terephthalic acid wastewater by Phanaerochaete chrysosporium and strain Fhhh. Bull Environ Contam Toxicol 72:387–393CrossRefGoogle Scholar
  96. Zhang HM, Nie JS, Wang F, Shi YT, Zhang L, Antonucci A, Liu HJ, Wang J, Zhao J, Zhang QL, Wang LP, Song J, Xue CE, Di Gioacchino M, Niu Q (2008) Effects of benzo[a]pyrene on autonomic nervous system of coke oven workers. Occup Health 50:308–316CrossRefGoogle Scholar
  97. Zhang XX, Cheng SP, Zhu CJ, Sun SL (2006) Microbial PAH-degradation in soil: degradation pathways and contributing factors. Pedosphere 16:555–565CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Fjordforsk Environmental SciencesFlåmNorway

Personalised recommendations