Environmental Chemistry Letters

, Volume 10, Issue 3, pp 225–237 | Cite as

Remediation technologies using cyclodextrins: an overview

  • David Landy
  • Isabelle Mallard
  • Anne Ponchel
  • Eric Monflier
  • Sophie Fourmentin


Nowadays, the human activity and the modern way of life are responsible for the increase of the environmental pollution. Industrial processes generate a variety of molecules that may pollute air, water, and soils due to negative impacts for ecosystems and humans. The development of innovative remediation technologies has thus emerged as a significant environmental priority. Within this scope, supramolecular chemistry, which is a recent discipline, could provide solutions. In particular, cyclodextrins (CDs) are a family of cyclic oligosaccharides having a low-polarity cavity in which organic compounds of appropriate shape and size can form inclusion complexes. This unique property makes them suitable for application in environmental protection. Here, we review the use of cyclodextrins and cyclodextrin derivatives in remediation technologies. Accordingly, the present review shows the advantages of using CDs in soil, groundwater, wastewater, and atmosphere remediation. Resulting processes are highly versatile, since the complexing ability of CD is applicable to a wide range of pollutants. They may also been referred to green processes, according to the CD innocuity. Moreover, as inclusion phenomena correspond to reversible equilibriums, a major trend in the CD environmental application field is to develop methods, which combine supramolecular chemistry and irreversible processes, as advanced oxidation or biodegradation. Such processes might lead to a complete remediation of pollutants and eventually to the CD recycling.


Cyclodextrins Remediation Soil Water Atmosphere Degradation Pollutants 


  1. Allabashi R, Arkas M, Hörmann G, Tsiourvas D (2007) Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers. Water Res 41(2):476–486. doi: 10.1016/j.watres.2006.10.011 CrossRefGoogle Scholar
  2. Anandan S, Yoon M (2004) Photocatalytic degradation of Nile red using TiO2-β-cyclodextrin colloids. Catal Commun 5(2):271–275. doi: 10.1016/j.catcom.2004.03.003 CrossRefGoogle Scholar
  3. Aoki N, Nishikawa M, Hattori K (2003) Synthesis of chitosan derivatives bearing cyclodextrin and adsorption of p-nonylphenol and bisphenol A. Carbohyd Polym 52(3):219–223. doi: 10.1016/S0144-8617(02)00308-9 CrossRefGoogle Scholar
  4. Asouhidou DD, Triantafyllidis KS, Lazaridis NK, Matis KA (2009) Adsorption of Remazol Red 3BS from aqueous solutions using APTES- and cyclodextrin-modified HMS-type mesoporous silicas. Colloids Surf A 346(1–3):83–90. doi: 10.1016/j.colsurfa.2009.05.029 CrossRefGoogle Scholar
  5. Badr T, Hanna K, De Brauer C (2004) Enhanced solubilization and removal of naphthalene and phenanthrene by cyclodextrins from two contaminated soils. J Hazard Mater 112(3):215–223. doi: 10.1016/j.jhazmat.2004.04.017 CrossRefGoogle Scholar
  6. Baruch-Teblum E, Mastai Y, Landfester K (2010) Miniemulsion polymerization of cyclodextrin nanospheres for water purification from organic pollutants. Eur Polym J 46(8):1671–1678. doi: 10.1016/j.eurpolymj.2010.05.007 CrossRefGoogle Scholar
  7. Belyakova LA, Shvets AN, De Namor AFD (2008a) The adsorption of mercury(II) on the surface of silica modified with β-cyclodextrin. Russ J Phys Chem A 82(8):1357–1362. doi: 10.1134/S0036024408080190 CrossRefGoogle Scholar
  8. Belyakova LA, Shvets OM, Lyashenko DY (2008b) Nanosized centers for mercury(II) ions adsorption on a surface of modified silica. Cent Eur J Chem 6(4):581–591. doi: 10.2478/s11532-008-0068-6 CrossRefGoogle Scholar
  9. Bergeron RJ (1977) Cycloamyloses. J Chem Edu 54(4):204–207. doi: 10.1021/ed054p204 CrossRefGoogle Scholar
  10. Bibby A, Mercier L (2003) Adsorption and separation of water-soluble aromatic molecules by cyclodextrin-functionalized mesoporous silica. Green Chem 5(1):15–19. doi: 10.1039/b209251b CrossRefGoogle Scholar
  11. Blach P, Fourmentin S, Landy D, Cazier F, Surpateanu G (2008) Cyclodextrins: a new efficient absorbent to treat waste gas streams. Chemosphere 70(3):374–380. doi: 10.1016/j.chemosphere.2007.07.018 CrossRefGoogle Scholar
  12. Bonenfant D, Niquette P, Mimeault M, Hausler R (2010) Adsorption and recovery of nonylphenol ethoxylate on a crosslinked beta-cyclodextrin-carboxymethylcellulose polymer. Water Sci Technol 61(9):2293–2301. doi: 10.2166/wst.2010.152 CrossRefGoogle Scholar
  13. Boving TB, Brusseau ML (2000) Solubilization and removal of residual trichloroethene from porous media: comparison of several solubilization agents. J Contam Hydrol 42(1):51–67. doi: 10.1016/S0169-7722(99)00077-7 CrossRefGoogle Scholar
  14. Brusseau ML, Wang X, Hu Q (1994) Enhanced transport of low-polarity organic compounds through soil by cyclodextrin. Environ Sci Technol 28(5):952–956. doi: 10.1021/es00054a030 CrossRefGoogle Scholar
  15. Brusseau ML, Wang X, Wang W-Z (1997) Simultaneous elution of heavy metals and organic compounds from soil by cyclodextrin. Environ Sci Technol 31(4):1087–1092. doi: 10.1021/es960612c CrossRefGoogle Scholar
  16. Butterfield MT, Agbaria RA, Warner IM (1996) Extraction of volatile PAHs from air by use of solid cyclodextrin. Anal Chem 68(7):1187–1190. doi: 10.1021/ac9510144 CrossRefGoogle Scholar
  17. Cassez A, Ponchel A, Bricout H, Fourmentin S, Landy D, Monflier E (2006) Eco-efficient catalytic hydrodechloration of carbon tetrachloride in aqueous cyclodextrin solutions. Catal Lett 108(3–4):209–214. doi: 10.1007/s10562-006-0045-7 CrossRefGoogle Scholar
  18. Chen C-Y, Chen C–C, Chung Y-C (2007) Removal of phthalate esters by α-cyclodextrin-linked chitosan bead. Bioresour Technol 98(13):2578–2583. doi: 10.1016/j.biortech.2006.09.009 CrossRefGoogle Scholar
  19. Connors KA (1995) Population characteristics of cyclodextrin complex stabilities in aqueous solution. J Pharm Sci 84(7):843–848. doi: 10.1002/jps.2600840712 CrossRefGoogle Scholar
  20. Connors KA (1997) The stability of cyclodextrin complexes in solution. Chem Rev 97(5):1325–1357. doi: 10.1021/cr960371r CrossRefGoogle Scholar
  21. Crini G (2003) Studies on adsorption of dyes on beta-cyclodextrin polymer. Bioresour Technol 90(2):193–198. doi: 10.1016/S0960-8524(03)00111-1 CrossRefGoogle Scholar
  22. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30(1):38–70. doi: 10.1016/j.progpolymsci.2004.11.002 CrossRefGoogle Scholar
  23. Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97(9):1061–1085. doi: 10.1016/j.biortech.2005.05.001 CrossRefGoogle Scholar
  24. Crini G (2008) Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dyes Pigm 77(2):415–426. doi: 10.1016/j.dyepig.2007.07.001 CrossRefGoogle Scholar
  25. Crini G, Morcellet M (2002) Synthesis and applications of adsorbents containing cyclodextrins. J Sep Sci 25(13):789–813. doi: 10.1002/1615-9314(20020901)25:13<789:AID-JSSC789>3.0.CO;2-J CrossRefGoogle Scholar
  26. Crini G, Peindy HN (2006) Adsorption of C.I. Basic Blue 9 on cyclodextrin-based material containing carboxylic groups. Dyes Pigm 70(3):204–211. doi: 10.1016/j.dyepig.2005.05.004 CrossRefGoogle Scholar
  27. Crini G, Peindy HN, Gimbert F, Robert C (2007) Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Sep Purif Technol 53(1):97–110. doi: 10.1016/j.seppur.2006.06.018 CrossRefGoogle Scholar
  28. Dabrowski A (2001) Adsorption—From theory to practice. Adv Colloid Interface Sci 93(1–3):135–224. doi: 10.1016/S0001-8686(00)00082-8 CrossRefGoogle Scholar
  29. Ducoroy L, Bacquet M, Martel B, Morcellet M (2008) Removal of heavy metals from aqueous media by cation exchange nonwoven PET coated with β-cyclodextrin-polycarboxylic moieties. React Funct Polym 68(2):594–600. doi: 10.1016/j.reactfunctpolym.2007.10.033 CrossRefGoogle Scholar
  30. Easton CJ, Lincoln SF (2000) Modified cyclodextrins, scaffolds and templates for supramolecular chemistry. Imperial College Press, LondonGoogle Scholar
  31. Fan Y, Feng Y-Q, Da S-L (2003a) On-line selective solid-phase extraction of 4-nitrophenol with β-cyclodextrin bonded silica. Anal Chim Acta 484(2):145–153. doi: 10.1016/S0003-2670(03)00342-8 CrossRefGoogle Scholar
  32. Fan Y, Feng Y-Q, Da S-L, Feng P-Y (2003b) Evaluation of β-cyclodextrin bonded silica as a selective sorbent for the solid-phase extraction of 4-nitrophenol and 2, 4-dinitrophenol. Anal Sci 19(5):709–714. doi: 10.2116/analsci.19.709 CrossRefGoogle Scholar
  33. Fava F, Di Gioia D, Marchetti L, Fenyvesi E, Szejtli J (2002) Randomly methylated β-cyclodextrin (RAMEB) enhance the aerobic biodegradation of polychlorinated biphenyl in aged-contaminated soils. J Incl Phenom Macrocycl Chem 44(1–4):417–421. doi: 10.1023/A:1023019903194 CrossRefGoogle Scholar
  34. Feng J, Miedaner A, Ahrenkiel P, Himmel ME, Curtis C, Ginley D (2005) Self-assembly of photoactive TiO2-cyclodextrin wires. J Am Chem Soc 127(43):14968–14969. doi: 10.1021/ja054448h CrossRefGoogle Scholar
  35. Fenyvesi E, Szente L, Russell NR, Mc Namara M (1996a) Specific guest types. Compr Supramol Chem 3:305–366 ElsevierGoogle Scholar
  36. Fenyvesi E, Szemán J, Szejtli J (1996b) Extraction of PAHs and pesticides from contaminated soils with aqueous CD solutions. J Incl Phenom Macrocycl Chem 25(1–3):229–232. doi: 10.1007/BF01041575 CrossRefGoogle Scholar
  37. Fenyvesi E, Gruiz K, Verstichel S, De Wilde B, Leitgib L, Csabai K, Szaniszlo N (2005) Biodegradation of cyclodextrins in soil. Chemosphere 60(8):1001–1008. doi: 10.1016/j.chemosphere.2005.01.026 CrossRefGoogle Scholar
  38. Fourmentin S, Outirite M, Blach P, Landy D, Ponchel A, Monflier E, Surpateanu G (2007) Solubilisation of chlorinated solvents by cyclodextrin derivatives. A study by static headspace gas chromatography and molecular modelling. J Hazard Mater 141(1):92–97. doi: 10.1016/j.jhazmat.2006.06.090 CrossRefGoogle Scholar
  39. French D (1957) The schardinger dextrins. Adv Carbohydr Chem 12:189–260. doi: 10.1016/S0096-5332(08)60209-X CrossRefGoogle Scholar
  40. French D, Pulley AO, Effenberger JA, Rougvie MA, Abdullah M (1965) Studies on the Schardinger dextrins *1: XII. The molecular size and structure of the δ-, ε-, ζ-, and η-dextrins. Arch Biochem Biophys 111(1):153–160. doi: 10.1016/0003-9861(65)90334-6 CrossRefGoogle Scholar
  41. Fukushima M, Tatsumi K (2007) Degradation of pentachlorophenol in contaminated soil suspensions by potassium monopersulfate catalyzed oxidation by a supramolecular complex between tetra(p-sulfophenyl)porphineiron(III) and hydroxypropyl-β-cyclodextrin. J Hazard Mater 144(1–2):222–228. doi: 10.1016/j.jhazmat.2006.10.013 CrossRefGoogle Scholar
  42. Furuta T, Ikefuji S, Tokunaga K, Neoh TL, Yoshii H (2007) Enhanced effect of RM-β-cyclodextrin on biodegradation of toluene in wastewater by activated sludge. J Incl Phenom Macrocycl Chem 57(1–4):21–27. doi: 10.1007/s10847-006-9168-0 CrossRefGoogle Scholar
  43. Hanna K, De Brauer C, Germain P, Chovelon JM, Ferronato C (2004) Degradation of pentachlorophenol in cyclodextrin extraction effluent using a photocatalytic process. Sci Total Environ 332(1–3):51–60. doi: 10.1016/j.scitotenv.2004.04.022 CrossRefGoogle Scholar
  44. Hanna K, Chiron S, Oturan MA (2005) Coupling enhanced water solubilization with cyclodextrin to indirect electrochemical treatment for pentachlorophenol contaminated soil remediation. Water Res 39(12):2763–2773. doi: 10.1016/j.watres.2005.04.057 CrossRefGoogle Scholar
  45. Hawari J, Paquet L, Zhou E, Halasz A, Zilber B (1996) Enhanced recovery of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) from soil: cyclodextrin versus anionic surfactants. Chemosphere 32(10):1929–1936. doi: 10.1016/0045-6535(96)00102-6 CrossRefGoogle Scholar
  46. Huang Y, Ma W, Li J, Cheng M, Zhao J, Wan L, Yu JC (2003) A novel β-CD-hemin complex photocatalyst for efficient degradation of organic pollutants at neutral pHs under visible irradiation. J Phys Chem B 107(35):9409–9414. doi: 10.1021/jp034854s) CrossRefGoogle Scholar
  47. Jicsinszky L, Hashimoto H, Fenyvesy E, Ueno A (1996) Cyclodextrin derivatives. Compr Supramol Chem 3:57–188 ElsevierGoogle Scholar
  48. Kamiya M, Nakamura K, Sasaki C (1994) Inclusion effects of cyclodextrins on photodegradation rates of parathion and paraoxon in aquatic medium. Chemosphere 28(11):1961–1966. doi: 10.1016/0045-6535(94)90146-5 CrossRefGoogle Scholar
  49. Kammona O, Dini E, Kiparissides C, Allabashi R (2008) Synthesis of polymeric microparticles for water purification. Micropor Mesopor Mat 110(1):141–149. doi: 10.1016/j.micromeso.2007.10.011 CrossRefGoogle Scholar
  50. Kenichi Y, Atsushi M, Yukio T, Mitsukatsu S, Yoshiaki Y, Tomoyuki I (1996) Patent JP 8333406Google Scholar
  51. Khan FI, Ghoshal AK (2000) Removal of volatile organic compounds from polluted air. J Loss Prevent Proc 13(6):527–545. doi: 10.1016/S0950-4230(00)00007-3 CrossRefGoogle Scholar
  52. Khan AR, Forgo P, Stine KJ, D’Souza VT (1998) Methods for selective modifications of cyclodextrins. Chem Rev 98(5):1977–1996. doi: 10.1021/cr970012b CrossRefGoogle Scholar
  53. Khodadoust AP, Narla O, Chandrasekaran S (2008) Cyclodextrin-enhanced extraction and removal of 2,4-dinitrotoluene from contaminated soils. Environ Eng Sci 25(4):615–626. doi: 10.1089/ees.2005.0010 CrossRefGoogle Scholar
  54. Landy D, Fourmentin S, Salome M, Surpateanu G (2000) Analytical improvement in measuring formation constants of inclusion complexes between β-cyclodextrin and phenolic compounds. J Incl Phenom Macrocycl Chem 38(1–4):187–198. doi: 10.1023/A:1008156110999 CrossRefGoogle Scholar
  55. Landy D, Mallard I, Ponchel A, Monflier E, Fourmentin S (2012) Cyclodextrins for remediation technologies. In: Lichtfouse E et al (eds) Environmental chemistry for a sustainable world: part 1. Springer, Berlin, pp 47–81. doi: 10.1007/978-94-007-2442-6_2 CrossRefGoogle Scholar
  56. Li DQ, Ma M (1999) Nanoporous polymers: new nanosponge absorbent media. Filtr Separat 36(10):26–28. doi: 10.1016/S0015-1882(00)80050-6 CrossRefGoogle Scholar
  57. Li J-M, Meng X-G, Hu C-W, Du J (2009) Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan. Bioresour Technol 100(3):1168–1173. doi: 10.1016/j.biortech.2008.09.015 CrossRefGoogle Scholar
  58. Li N, Mei Z, Ding S (2010) 2,4-Dichlorophenol sorption on cyclodextrin polymers. J Incl Phenom Macrocycl Chem 68(1):123–129. doi: 10.1007/s10847-010-9751-2 CrossRefGoogle Scholar
  59. Lindsey ME, Xu G, Lu J, Tarr MA (2003) Enhanced Fenton degradation of hydrophobic organics by simultaneous iron and pollutant complexation with cyclodextrins. Sci Total Environ 307(1–3):215–229. doi: 10.1016/S0048-9697(02)00544-2 CrossRefGoogle Scholar
  60. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758. doi: 10.1021/cr00035a013 CrossRefGoogle Scholar
  61. Lu P, Wu F, Deng N (2004) Enhancement of TiO2 photocatalytic redox ability by β-cyclodextrin in suspended solutions. Appl Catal B 53(2):87–93. doi: 10.1016/j.apcatb.2004.04.016 CrossRefGoogle Scholar
  62. Mahlambi MM, Malefetse TJ, Mamba BB, Krause RW (2009) β-Cyclodextrin-ionic liquid polyurethanes for the removal of organic pollutants and heavy metals from water: synthesis and characterization. J Polym Res 17(4):589–600. doi: 10.1007/s10965-009-9347-y CrossRefGoogle Scholar
  63. Mallard Favier I, Baudelet D, Fourmentin S (2011) VOC trapping by new crosslinked cyclodextrin polymers. J Incl Phenom Macrocycl Chem 69(3–4):433–437. doi: 10.1007/s10847-010-9776-6 CrossRefGoogle Scholar
  64. Mamba BB, Krause RW, Malefetse TJ, Nxumalo EN (2007) Monofunctionalized cyclodextrin polymers for the removal of organic pollutants from water. Environ Chem Lett 5(2):79–84. doi: 10.1007/s10311-006-0082-x CrossRefGoogle Scholar
  65. Martel B, Devassine M, Crini G, Weltrowski M, Bourdonneau M, Morcellet M (2001) Preparation and sorption properties of a β-cyclodextrin-linked chitosan derivative. J Polym Sci Pol Chem 39(1):169–176. doi: 10.1002/1099-0518(20010101)39:1<169:AID-POLA190>3.0.CO;2-G CrossRefGoogle Scholar
  66. Matta R, Hanna K, Kone T, Chiron S (2008) Oxidation of 2,4,6-trinitrotoluene in the presence of different iron-bearing minerals at neutral pH. Chem Eng J 144(3):453–458. doi: 10.1016/j.cej.2008.07.013 CrossRefGoogle Scholar
  67. Mhlanga SD, Mamba BB, Krause RW, Malefetse TJ (2007) Removal of organic contaminants from water using nanosponge cyclodextrin polyurethanes. J Chem Technol Biotechnol 82(4):382–388. doi: 10.1002/jctb.1681 CrossRefGoogle Scholar
  68. Mizobuchi Y, Tanaka M, Kawaguchi Y, Shono T (1981) Sorption behavior of low molecular weight organic vapours on β-cyclodextrin polyurethane resins. Bull Chem Soc Jpn 54(8):2487–2490. doi: 10.1246/bcsj.54.2487 CrossRefGoogle Scholar
  69. Molnar M, Leigib L, Gruiz K, Fenyvesi E, Szaniszlo N, Szejtli J, Fava F (2005) Enhanced biodegradation of transformer oil in soils with cyclodextrins—from the laboratory to the field. Biodegradation 16(2):159–168. doi: 10.1007/s10532-004-4873-0 CrossRefGoogle Scholar
  70. Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60(1–4):371–380. doi: 10.1016/S0013-7952(00)00117-4 CrossRefGoogle Scholar
  71. Murai S, Imajo S, Inumaru H, Takahashi K, Hattori K (1997) Adsorption and recovery of ionic surfactants by β-cyclodextrin polymer. J Colloid Interf Sci 190(2):488–490. doi: 10.1006/jcis.1997.4873 CrossRefGoogle Scholar
  72. Nakagawa T, Ueno K, Kashiwa M, Watanabe J (1994) The stereoselective synthesis of cyclomaltopentaose. A novel cyclodextrin homologue with D.P. five. Tetrahedron Lett 35(12):1921–1924. doi: 10.1016/S0040-4039(00)73196-0 CrossRefGoogle Scholar
  73. Orprecio R, Evans CH (2003) Polymer-immobilized cyclodextrin trapping of model organic pollutants in flowing water streams. J Appl Polym Sci 90(8):2103–2110. doi: 10.1002/a12818 CrossRefGoogle Scholar
  74. Ozmen EY, Yilmaz M (2007) Use of β-cyclodextrin and starch based polymers for sorption of Congo red from aqueous solutions. J Hazard Mater 148(1–2):303–310. doi: 10.1016/j.jhazmat.2007.02.042 CrossRefGoogle Scholar
  75. Ozmen EY, Sezgin M, Yilmaz A, Yilmaz M (2008) Synthesis of β-cyclodextrin and starch based polymers for sorption of azo dyes from aqueous solutions. Bioresour Technol 99(3):526–531. doi: 10.1016/j.biortech.2007.01.023 CrossRefGoogle Scholar
  76. Pérez-Martínez JI, Ginés JM, Morillo E, González-Rodríguez ML, Moyano Méndez JR (2000) Improvement of the desorption of the pesticide 2, 4-D via complexation with HP-β-cyclodextrin. Pest Manage Sci 56(5):425–430. doi: 10.1002/(SICI)1526-4998(200005)56:5<425:AID-PS156>3.0.CO;2-W CrossRefGoogle Scholar
  77. Phan TNT, Bacquet M, Laureyns J, Morcellet M (1999) New silica gels functionalized with 2-hydroxy-3-methacryloyloxypropyl- β-cyclodextrin using coating or grafting methods. Phys Chem Chem Phys 1(22):5189–5195. doi: 10.1039/a905713g CrossRefGoogle Scholar
  78. Phan TNT, Bacquet M, Morcellet M (2000) Synthesis and characterization of silica gels functionalized with monochlorotriazinyl β-cyclodextrin and their sorption capacities towards organic compounds. J Incl Phenom Macrocycl Chem 38(1–4):345–359. doi: 10.1023/A:1008169111023 CrossRefGoogle Scholar
  79. Phan TNT, Bacquet M, Morcellet M (2002) The removal of organic pollutants from water using new silica-supported β-cyclodextrin derivatives. React Funct Polym 52(3):117–125. doi: 10.1016/S1381-5148(02)00079-2 CrossRefGoogle Scholar
  80. Pitha J, Szabo L, Fales H (1987) Reaction of cyclodextrins with propylene oxide or with glycidol: analysis of product distribution. Carbohydr Res 168(2):191–198. doi: 10.1016/0008-6215(87)80025-3 CrossRefGoogle Scholar
  81. Pluemsab W, Fukazawa Y, Furuike T, Nodasaka Y, Sakairi N (2007) Cyclodextrin-linked alginate beads as supporting materials for Sphingomonas cloacae, a nonylphenol degrading bacteria. Bioresour Technol 98(11):2076–2081. doi: 10.1016/j.biortech.2006.08.009 CrossRefGoogle Scholar
  82. Ponchel A, Abramson S, Quartararo J, Bormann D, Barbaux Y, Monflier E (2004) Cyclodextrin silica-based materials: advanced characterizations and study of their complexing behavior by diffuse reflectance UV-Vis spectroscopy. Microporous Mesoporous Mater 75(3):261–272. doi: 10.1016/j.micromeso.2004.07.005 CrossRefGoogle Scholar
  83. Qiu X, Wub P, Zhang H, Li M, Yan Z (2009) Isolation and characterization of arthrobacter sp. HY2 capable of degrading a high concentration of p-nitrophenol. Bioresour Technol 100(21):5243–5248. doi: 10.1016/j.biortech.2009.05.056 CrossRefGoogle Scholar
  84. Rafin C, Veignie E, Fayeulle A, Surpateanu G (2009) Benzo[a]pyrene degradation using simultaneously combined chemical oxidation, biotreatment with Fusarium solani and cyclodextrins Bioresour. Technol 100(12):3157–3160. doi: 10.1016/j.biortech.2009.01.012 CrossRefGoogle Scholar
  85. Romo A, Peñas FJ, Isasi JR, García-Zubiri IX, González-Gaitano G (2008) Extraction of phenols from aqueous solutions by β-cyclodextrin polymers. Comparison of sorptive capacities with other sorbents. React Funct Polym 68(1):406–413. doi: 10.1016/j.reactfunctpolym.2007.07.005 CrossRefGoogle Scholar
  86. Saenger W (1980) Cyclodextrin inclusion compounds in research and industry. Angew Chem Int Ed 19(5):344–362. doi: 10.1002/anie.198003441 CrossRefGoogle Scholar
  87. Saenger W, Jacob J, Gessler K, Steiner T, Hoffmann D, Sanbe H, Koizumi K, Smith SM, Takaha T (1998) Structures of the common cyclodextrins and their larger analogues. Beyond the doughnut. Chem Rev 98(5):1787–1802. doi: 10.1021/cr9700181 CrossRefGoogle Scholar
  88. Salipira KL, Mamba BB, Krause RW, Malefetse TJ, Durbach SH (2007) Carbon nanotubes and cyclodextrin polymers for removing organic pollutants from water. Environ Chem Lett 5(1):13–17. doi: 10.1007/s10311-006-0057-y CrossRefGoogle Scholar
  89. Sawicki R, Mercier L (2006) Evaluation of mesoporous cyclodextrin-silica nanocomposites for the removal of pesticides from aqueous media. Environ Sci Technol 40(6):1978–1983. doi: 10.1021/es051441r CrossRefGoogle Scholar
  90. Schwartz A, Bar R (1995) Cyclodextrin enhanced degradation of toluene and p-toluic acid by Pseudomonas putida. Appl Environ Microbiol 61(7):2727–2731Google Scholar
  91. Sevillano X, Isasi JR, Peñas FJ (2008) Feasibility study of degradation of phenol in a fluidized bed bioreactor with a cyclodextrin polymer as biofilm carrier. Biodegradation 19(4):589–597. doi: 10.1007/s10532-007-9164-0 CrossRefGoogle Scholar
  92. Shao D, Sheng G, Chen C, Wang X, Nagatsu M (2010) Removal of polychlorinated biphenyls from aqueous solutions using β-cyclodextrin grafted multiwalled carbon nanotubes. Chemosphere 79(7):679–685. doi: 10.1016/j.chemosphere.2010.03.008 CrossRefGoogle Scholar
  93. Shirin S, Buncel E, Van Loon GW (2004) Effect of cyclodextrins on iron-mediated dechlorination of trichloroethylene—a proposed new mechanism. Can J Chem 82(12):1674–1685. doi: 10.1139/V04-140 CrossRefGoogle Scholar
  94. Shixiang G, Liansheng W, Qingguo H, Sukui H (1998) Solubilization of polycyclic aromatic hydrocarbons by β-cyclodextrin and carboxymethyl-β-cyclodextrin. Chemosphere 37(7):1299–1305. doi: 10.1016/S0045-6535(98)00127-1 CrossRefGoogle Scholar
  95. Singh M, Sharma R, Banerjee UC (2002) Biotechnological applications of cyclodextrins. Biotechnol Adv 20(5–6):341–359. doi: 10.1016/S0734-9750(02)00020-4 CrossRefGoogle Scholar
  96. Siu M, Yaylayan VA, Bélanger JMR, Paré JRJ (2005) Microwave-assisted immobilization of β-cyclodextrin on PEGylated Merrifield resins. Tetrahedron Lett 46(21):3737–3739. doi: 10.1016/j.tetlet.2005.03.154 CrossRefGoogle Scholar
  97. Skold ME, Thyne GD, Drexler JW, Macalady DL, Mccray JE (2008) Enhanced solubilization of a metal–organic contaminant mixture (Pb, Sr, Zn, and perchloroethylene) by cyclodextrin. Environ Sci Technol 42(23):8930–8934. doi: 10.1021/es801835x CrossRefGoogle Scholar
  98. Skold ME, Thyne GD, Drexler JW, McCray JE (2009) Solubility enhancement of seven metal contaminants using carboxymethyl-β-cyclodextrin (CMCD). J Contam Hydrol 107(3–4):108–113. doi: 10.1016/j.jconhyd.2009.04.006 CrossRefGoogle Scholar
  99. Stella VJ, Rajewski RA (1991) Patent WO 9111172Google Scholar
  100. Stroud JL, Tzima M, Paton GI, Semple KT (2009) Influence of hydroxypropyl-β-cyclodextrin on the biodegradation of 14C-phenanthrene and 14C-hexadecane in soil. Environ Pollut 157(10):2678–2683. doi: 10.1016/j.envpol.2009.05.009 CrossRefGoogle Scholar
  101. Szaniszlo N, Fenyvesi E, Balla J (2005) Structure-stability study of cyclodextrin complexes with selected volatile hydrocarbon contaminants of soils. J Inclusion Phenom Macrocyclic Chem 53(3):241–248. doi: 10.1007/s10847-005-0245-6 CrossRefGoogle Scholar
  102. Szejtli J (1982) Cyclodextrins and their inclusion complexes. Akademiai Kiado, BudapestGoogle Scholar
  103. Szejtli J (1989) Downstream processing using cyclodextrins. Trends Biotechnol 7(7):170–174. doi: 10.1016/0167-7799(89)90094-2 CrossRefGoogle Scholar
  104. Szejtli J (1996a) Chemistry, physical and biological properties of cyclodextrins. Compr Supramol Chem 3:5–40 ElsevierGoogle Scholar
  105. Szejtli J (1996b) Inclusion of guest molecules, selectivity and molecular recognition by cyclodextrins. Compr Supramol Chem 3:189–204 ElsevierGoogle Scholar
  106. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98(5):1743–1753. doi: 10.1021/cr970022c CrossRefGoogle Scholar
  107. Szente L (1996) Preparation of cyclodextrin complexes. Compr Supramol Chem 3:243–252 ElsevierGoogle Scholar
  108. Szente L, Fenyvesi E, Szejtli J (1999) Entrapment of iodine with cyclodextrins- potential application of cyclodextrins in nuclear waste management. Environ Sci Technol 33(24):4495–4498. doi: 10.1021/es981287r CrossRefGoogle Scholar
  109. Tachikawa T, Tojo S, Fujitsuka M, Majima T (2006) One-electron oxidation pathways during β-cyclodextrin-modified TiO2 photocatalytic reactions. Chem Eur J 12(29):7585–7594. doi: 10.1002/chem.200600097 CrossRefGoogle Scholar
  110. Tick GR, Lourenso F, Wood AL, Brusseau ML (2003) Pilot-scale demonstration of cyclodextrin as a solubility-enhancement agent for remediation of a tetrachloroethene-contaminated aquifer. Environ Sci Technol 37(24):5829–5834. doi: 10.1021/es030417f CrossRefGoogle Scholar
  111. Tojima T, Katsura H, Nishiki M, Nishi N, Tokura S, Sakairi N (1999) Chitosan beads with pendant α-cyclodextrin: preparation and inclusion property to nitrophenolates. Carbohyd Polym 40(1):17–22. doi: 10.1016/S0144-8617(99)00030-2 CrossRefGoogle Scholar
  112. Toma SH, Bonacin JA, Araki K, Toma HE (2006) Selective host-guest interactions on mesoporous TiO2 films modified with carboxymethyl-β-cyclodextrin. Surf Sci 600(19):4591–4597. doi: 10.1016/j.susc.2006.07.027 CrossRefGoogle Scholar
  113. Trotta F, Cavalli R (2009) Characterization and applications of new hyper-cross-linked cyclodextrins. Compos Interface 16(1):39–48. doi: 10.1163/156855408X379388 CrossRefGoogle Scholar
  114. Uekama K, Hirashima N, Horiuchi Y, Hirayama F, Ijitsu T, Ueno MJ (1987) Ethylated β-cyclodextrins as hydrophobic drug carriers: sustained release of diltiazem in the rat. J Pharm Sci 76(8):660–661. doi: 10.1002/jps.2600760816 CrossRefGoogle Scholar
  115. Uemasu I, Kushiyama S, Aizawa R (1996) Capture of volatile chlorinated hydrocarbons by aqueous solutions of branched cyclodextrins. J Incl Phenom Macrocycl Chem 25(1–3):221–224. doi: 10.1007/BF01041573 CrossRefGoogle Scholar
  116. Veignie E, Rafin C, Landy D, Fourmentin S, Surpateanu G (2009) Fenton degradation assisted by cyclodextrins of a high molecular weight polycyclic aromatic hydrocarbon benzo[a]pyrene. J Hazard Mater 168(2–3):1296–1301. doi: 10.1016/j.jhazmat.2009.03.012 CrossRefGoogle Scholar
  117. Villaverde J, Maqueda C, Undabeytia T, Morillo E (2007) Effect of various cyclodextrins on photodegradation of a hydrophobic herbicide in aqueous suspensions of different soil colloidal components. Chemosphere 69(4):575–584. doi: 10.1016/j.chemosphere.2007.03.022 CrossRefGoogle Scholar
  118. Virkutyte J, Sillanpää M, Latostenmaa P (2002) Electrokinetic soil remediation—critical overview. Sci Total Environ 289(1–3):97–121. doi: 10.1016/S0048-9697(01)01027-0 CrossRefGoogle Scholar
  119. Wang X, Brusseau ML (1993) Solubilization of some low-polarity organic compounds by hydroxypropyl-β-cyclodextrin. Environ Sci Technol 27(13):2821–2825. doi: 10.1021/es00049a023 CrossRefGoogle Scholar
  120. Wang X, Brusseau ML (1995) Simultaneous complexation of organic compounds and heavy metals by a modified cyclodextrin. Environ Sci Technol 29(10):2632–2635. doi: 10.1021/es00010a026 CrossRefGoogle Scholar
  121. Wang G, Wu F, Zhang X, Luo M, Deng N (2006a) Enhanced TiO2 photocatalytic degradation of bisphenol A by β-cyclodextrin in suspended solutions. J Photochem Photobiol A 179(1–2):49–56. doi: 10.1016/j.jphotochem.2005.07.011 CrossRefGoogle Scholar
  122. Wang G, Wu F, Zhang X, Luo M, Deng N (2006b) Enhanced TiO2 photocatalytic degradation of bisphenol E by β-cyclodextrin in suspended solutions. J Hazard Mat 133(1–3):85–91. doi: 10.1016/j.jhazmat.2005.09.058 CrossRefGoogle Scholar
  123. Wang G, Qi P, Xue X, Wu F, Deng N (2007) Photodegradation of bisphenol Z by UV irradiation in the presence of β-cyclodextrin. Chemosphere 67(4):762–769. doi: 10.1016/j.chemosphere.2006.10.041 CrossRefGoogle Scholar
  124. Yamasaki H, Makihata Y, Fukunaga K (2006) Efficient phenol removal of wastewater from phenolic resin plants using crosslinked cyclodextrin particles. J Chem Technol Biot 81(7):1271–1276. doi: 10.1002/jctb.1545 CrossRefGoogle Scholar
  125. Yamasaki H, Makihata Y, Fukunaga K (2008) Preparation of crosslinked β-cyclodextrin polymer beads and their application as a sorbent for removal of phenol from wastewater. J Chem Technol Biot 83(7):991–997. doi: 10.1002/jctb.1904 CrossRefGoogle Scholar
  126. Yardin G, Chiron S (2006) Photo–Fenton treatment of TNT contaminated soil extract solutions obtained by soil flushing with cyclodextrin. Chemosphere 62(9):1395–1402. doi: 10.1016/j.chemosphere.2005.05.019 CrossRefGoogle Scholar
  127. Yilmaz A, Yilmaz E, Yilmaz M, Bartsch RA (2007) Removal of azo dyes from aqueous solutions using calix[4]arene and β-cyclodextrin. Dyes Pigm 74(1):54–59. doi: 10.1016/j.dyepig.2006.01.011 CrossRefGoogle Scholar
  128. Yilmaz E, Memon S, Yilmaz M (2010) Removal of direct azo dyes and aromatic amines from aqueous solutions using two β-cyclodextrin-based polymers. J Hazard Mater 174(1–3):592–597. doi: 10.1016/j.jhazmat.2009.09.093 CrossRefGoogle Scholar
  129. Yu JC, Jiang Z-T, Liu H-Y, Yu J, Zhang L (2003) β-Cyclodextrin epichlorohydrin copolymer as a solid-phase extraction adsorbent for aromatic compounds in water samples. Anal Chim Acta 477(1):93–101. doi: 10.1016/S0003-2670(02)01411-3 CrossRefGoogle Scholar
  130. Zeng Q-R, Tang H-X, Liao B-H, Zhong T, Tang C (2006) Solubilization and desorption of methyl-parathion from porous media—a comparison of hydroxypropyl-β-cyclodextrin and two nonionic surfactants. Water Res 40(7):1351–1358. doi: 10.1016/j.watres.2006.01.036 CrossRefGoogle Scholar
  131. Zhang X, Wu F, Wang Z, Guo Y, Deng N (2009) Photocatalytic degradation of 4, 4′-biphenol in TiO2 suspension in the presence of cyclodextrins: a trinity integrated mechanism. J Mol Catal A Chem 301(1–2):134–139. doi: 10.1016/j.molcata.2008.11.022 CrossRefGoogle Scholar
  132. Zhang X, Wu F, Deng N (2010) Degradation of paracetamol in self assembly β-cyclodextrin/TiO2 suspension under visible irradiation. Catal Commun 11(5):422–425. doi: 10.1016/j.catcom.2009.11.013 CrossRefGoogle Scholar
  133. Zhang X, Wu F, Deng N (2011a) Efficient photodegradation of dyes using light-induced self assembly TiO2/β-cyclodextrin hybrid nanoparticles under visible light irradiation. J Hazard Mater 185(1):117–223. doi: 10.1016/j.jhazmat.2010.09.005 CrossRefGoogle Scholar
  134. Zhang X, Li X, Deng N (2011b) Enhanced and selective degradation of pollutants over cyclodextrin/TiO2 under visible light irradiation. Ind Eng Chem Res. (in press). doi: 10.1021/ie201694v
  135. Zhou J, Jiang W, Ding J, Zhang X, Gao S (2007) Effect of Tween 80 and β-cyclodextrin on degradation of decabromodiphenyl ether (BDE-209) by White Rot Fungi. Chemosphere 70(2):172–177. doi: 10.1016/j.chemosphere.2007.06.036 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • David Landy
    • 1
    • 2
  • Isabelle Mallard
    • 1
    • 2
  • Anne Ponchel
    • 1
    • 3
    • 4
  • Eric Monflier
    • 1
    • 3
    • 4
  • Sophie Fourmentin
    • 1
    • 2
  1. 1.Univ Lille Nord de FranceLilleFrance
  2. 2.ULCO, UCEIVDunkerqueFrance
  3. 3.UArtois, UCCS, Faculté des Sciences Jean Perrin, Rue Jean SouvrazLens CedexFrance
  4. 4.CNRS, UMRLilleFrance

Personalised recommendations