Environmental Chemistry Letters

, Volume 8, Issue 2, pp 193–198 | Cite as

Quantification of singlet oxygen and hydroxyl radicals upon UV irradiation of surface water

  • Davide Vione
  • Daniele Bagnus
  • Valter Maurino
  • Claudio Minero
Original Paper

Abstract

We measured the formation rate and the steady-state concentration of hydroxyl radicals and of singlet oxygen upon irradiation of lake water. There is controversy about the importance of singlet oxygen in the environmental photochemistry, but here we show that the steady-state concentration of 1O2 under irradiation can be higher by about two orders of magnitude compared to the hydroxyl radical. The higher occurrence of singlet oxygen in surface waters is mainly due to a higher rate of formation, because the transformation rate constants of 1O2 (collision with the solvent) and of ·OH (reaction with dissolved compounds) are comparable.

Keywords

Photochemistry Indirect photolysis Dissolved organic matter Phototransformation Furfuryl alcohol 

References

  1. Boreen AL, Edhlund BL, Cotner JB, McNeill K (2008) Indirect photodegradation of dissolved free amino acids: the contribution of singlet oxygen and the differential reactivity of DOM from various sources. Environ Sci Technol 42:5492–5498. doi:10.1021/es800185d CrossRefGoogle Scholar
  2. Boule P (ed) (1999) The handbook of environmental chemistry, vol 2.L (environmental photochemistry). Springer, BerlinGoogle Scholar
  3. Braslavsky SE (2007) Glossary of terms used in photochemistry, 3rd edition. Pure Appl Chem 79:293–465. doi:10.1351/pac200779030293 CrossRefGoogle Scholar
  4. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution. J Phys Chem Ref Data 17:513–886Google Scholar
  5. Canonica S, Kohn T, Mac M, Real FJ, Wirz J, Von Gunten U (2005) Photosensitizer method to determine rate constants for the reaction of carbonate radical with organic compounds. Environ Sci Technol 39:9182–9188. doi:10.1021/es051236b CrossRefGoogle Scholar
  6. Czaplicka M (2006) Photo-degradation of chlorophenols in the aqueous solution. J Hazard Mater B134:45–59. doi:10.1016/j.jhazmat.2005.10.039 CrossRefGoogle Scholar
  7. Deister U, Warneck P, Wurzinger C (2000) OH radicals generated by NO3 photolysis in aqueous solution: competition kinetics and a study of the reaction OH + CH2(OH)SO3 . Ber Bunsenges Phys Chem 94:594–599Google Scholar
  8. Del Vecchio R, Blough NV (2002) Photobleaching of chromophoric dissolved organic matter in natural waters: kinetics and modelling. Mar Chem 78:231–253. doi:10.1016/S0304-4203(02)00036-1 CrossRefGoogle Scholar
  9. Fenner K, Canonica S, Escher BI, Gasser L, Spycher S, Tülp HC (2006) Developing methods to predict chemical fate and effect endpoints for use within REACH. Chimia (Aarau) 60:683–690. doi:10.2533/chimia.2006.683 CrossRefGoogle Scholar
  10. Halladja S, Ter Halle A, Aguer JP, Boulkamh A, Richard C (2007) Inhibition of humic substances mediated photooxygenation of furfuryl alcohol by 2,4,6-trimethylphenol. Evidence for reactivity of the phenol with humic triplet excited states. Environ Sci Technol 41:6066–6073. doi:10.1021/es070656t CrossRefGoogle Scholar
  11. Hoigné J (1990) Formulation and calibration of environmental reaction kinetics: Oxidations by aqueous photooxidants as an example. In: Stumm W (ed) Aquatic chemical kinetics. Wiley, NY, pp 43–70Google Scholar
  12. Lam MW, Mabury SA (2005) Photodegradation of the pharmaceuticals atorvastatin, carbamazepine, levofloxacin, and sulfamethoxazole in natural waters. Aquat Sci 67:177–188. doi:10.1007/s00027-004-0768-8 CrossRefGoogle Scholar
  13. Minero C, Chiron S, Falletti G, Maurino V, Pelizzetti E, Ajassa R, Carlotti ME, Vione D (2007) Photochemical processes involving nitrite in surface water samples. Aquat Sci 69:71–85. doi:10.1007/s00027-007-0881-6 CrossRefGoogle Scholar
  14. Vione D, Maurino V, Minero C, Pelizzetti E (2004) Phenol nitration upon oxidation of nitrite by Mn(III, IV) (hydr)oxides. Chemosphere 55:941–949. doi:10.1016/j.chemosphere.2003.12.013 CrossRefGoogle Scholar
  15. Vione D, Ponzo M, Bagnus D, Maurino V, Minero C, Carlotti ME (2009) Comparison of different probe molecules for the quantification of hydroxyl radicals in aqueous solution. Environ Chem Lett (in press). doi:10.1007/s10311-008-0197-3

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Davide Vione
    • 1
  • Daniele Bagnus
    • 1
  • Valter Maurino
    • 1
  • Claudio Minero
    • 1
  1. 1.Dipartimento di Chimica AnaliticaUniversità di TorinoTurinItaly

Personalised recommendations