Environmental Chemistry Letters

, Volume 8, Issue 2, pp 123–128 | Cite as

Photodegradation of fenamiphos on the surface of clays and soils

  • L. Tajeddine
  • M. Nemmaoui
  • H. Mountacer
  • A. Dahchour
  • Mohamed Sarakha
Original Paper


The photodegradation of the organophosphorus fenamiphos was studied in various clay matrices: montmorillonite, kaolin and the mineral components of two soils collected from two different sites: Settat (S) and Berrechid (B). The degradation was shown to be mainly due to the direct excitation of fenamiphos and was similar for all the matrices with a two-step kinetics : a fast and a slower one. The first step rate obtained at the surface of montmorillonite was slightly lower than that determined at the surface of kaolin. The fenamiphos degradation process clearly depended on the amount of humic substances and iron(III). The latter component accelerated the disappearance of fenamiphos, while humic substances clearly inhibited the process. The degradation rate increased in the presence of water and was mainly due to the involvement of the photohydrolysis process leading to the scission of the P–O bond. The formation of the main by-products, sulfoxide, sulfone and phenol derivatives, were elucidated by HPLC/MS.


Organophosphorus Fenamiphos Clay Soil Photodegradation 



The authors would like to thank the North Atlantic Treaty Organisation (NATO) for financial support through the NATO Science Programme, Collaborative Linkage Grant under the reference CBP.MD.CLG 982508. The authors would also like to thank the referees for their suggestions and comments that improved the manuscript.


  1. Albanis TA, Bochicchio D, Bufo SA, Cospito I, D’Auria M, Lekka M, Scrano L (2002) Surface adsorption and photoreactivity of sulfonylurea herbicides. Int J Environ Anal Chem 82:561–569. doi: 10.1080/03067310290007822 CrossRefGoogle Scholar
  2. Balmer ME, Goss K-U, Schwarzenbach RP (2000) Photolytic transformation of organic pollutants on soil surfaces: an experimenatl approach. Environ Sci Technol 34:1240–1245. doi: 10.1021/es990910k CrossRefGoogle Scholar
  3. Benkelberg H-J, Warneck P (1995) Photodecomposition of iron(III) hydroxo and sulfato complexes in aqueous solution: wavelength dependence of OH and SO4 quantum yields. J Phys Chem 99:5214–5221. doi: 10.1021/j100014a049 CrossRefGoogle Scholar
  4. Burrows HD, Canle LM, Santaballa JA, Steenken S (2002) Reaction pathways and mechanisms of photodegradation of pesticides. J Photochem Photobiol B 67:71–108CrossRefGoogle Scholar
  5. Catastini C, Sarakha M, Mailhot G, Bolte M (2002) Iron(III) aquacomplexes as effective photocatalysts for the degradation of pesticides in homogeneous aqueous solutions. Sci Total Environ 298:219–228. doi: 10.1016/S0048-9697(02)00219-X CrossRefGoogle Scholar
  6. Centi G, Perathoner S (2003) Remediation of water contamination using catalytic technologies. Appl Catal B Environ 41:15–29CrossRefGoogle Scholar
  7. Chiron S, Fernandez-Alba A, Rodriguez A, Garcia-Calvo E (2000) Pesticide chemical oxidation: state-of-the-art. Water Res 34:366–377. doi: 10.1016/S0043-1354(99)00173-6 CrossRefGoogle Scholar
  8. Copper CM (1991) Insecticide concentration in ecosystem components of an intensively cultivated watershed in Mississipi. J Freshw Ecol 6:237–247Google Scholar
  9. Goncalves C, Dimou A, Sakkas V, Alpendurada MF, Albanis TA (2006) Photolytic degradation of quinalphos in natural waters and on soil matrices under simulated solar irradiation. Chemosphere 64:1375–1382. doi: 10.1016/j.chemosphere.2005.12.020 CrossRefGoogle Scholar
  10. Hebert VR, Miller GC (1990) Depth dependence of direct and indirect photolysis on soil surfaces. J Agric Food Chem 38:913–918. doi: 10.1021/jf00093a069 CrossRefGoogle Scholar
  11. Menager M, Pan X, Wong Wah-Chung P, Sarakha M (2007) Photochemistry of the pesticide azinphos-methyl and its model molecule 1, 2, 3-benzotriazin-4(3H)-one in aqueous solutions: kinetic and analytical studies. J Photochem Photobiol Chem 192:41–48. doi: 10.1016/j.jphotochem.2007.05.001 CrossRefGoogle Scholar
  12. Nose K (1987) A multi-site decay model of pesticide in soil. J Pestic Sci 12:505–508Google Scholar
  13. Rafqah S, Aamili A, Nelieu S, Kerhoas L, Einhorn J, Mailhot G, Sarakha M (2004) Kinetics and mechanism of the degradation of the pesticide metsulfuron methyl induced by excitation of iron(III) aquacomplexes in aqueous solutions: steady state and transient absorption spectrscopy studies. Photochem Photobiol Sci 3:296–304. doi: 10.1039/b314001f CrossRefGoogle Scholar
  14. Robert M (1975) Principes de détermination qualitative des minéraux argileux les plus fréquents dans les sols des régions tempérés. Ann Agron 26(4):363–399Google Scholar
  15. Tessier D (1974) Méthode de préparation des argiles des sols pour des études minéralogiques. Ann Agron 25(6):859–882Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • L. Tajeddine
    • 1
  • M. Nemmaoui
    • 1
  • H. Mountacer
    • 1
  • A. Dahchour
    • 2
  • Mohamed Sarakha
    • 3
  1. 1.Laboratoire des Sciences de l’Environnement et du DéveloppementEquipe de Chimie Ecologique, FST Université Hassan 1er SettatSettatMorocco
  2. 2.Institut Agronomique et Vétérinaire Hassan II BP 620, Rabat-InstitutsRabatMorocco
  3. 3.Laboratoire de Photochimie Moléculaire et MacromoléculaireUniversité Blaise PascalAubière CedexFrance

Personalised recommendations