Environmental Chemistry Letters

, Volume 7, Issue 1, pp 79–84 | Cite as

Determination of sorbent point zero charge: usefulness in sorption studies

  • Núria Fiol
  • Isabel VillaescusaEmail author
Original Paper


Potentiometric mass titration (PMT) technique has been adapted to determine the pHpzc of four vegetable wastes: grape stalks, cork, yohimbe bark and olive stones wastes used for Cu(II) removal. The pH at the point zero charge (pHpzc), determined by PMT, are compared with that obtained by two classical techniques: mass titration (MT) and immersion technique (IT). PMT has been found to be an easy and appropriate technique to determine pHpzc of the studied materials. From the results, the knowledge of sorbents pHpzc provides information about the possible attraction and repulsion between sorbent and sorbate but in any case enables to ensure that electrostatic force is one of the mechanisms that takes place in metal sorption.


Potentiometric mass titration Immersion technique Mass titration pHpzc Cu(II) sorption Vegetable wastes 



This research was supported by the Ministerio de Educación y Ciencia, Spain (project CTM2005-07342-C02-01/TECNO).


  1. Bourikas K, Vakros J, Kordulis C, Lycourghiotis A (2003) Potentiometric mass titrations: experimental and theoretical establishment of a new technique for determining the point of zero charge (PZC) for metal (Hydr)oxides. J Phys Chem 107:9441–9451CrossRefGoogle Scholar
  2. Cochrane E, Lu S, Gibb SW, Villaescusa I (2006) A comparison of low-cost biosorbents and commercial sorbents for the removal of copper from aqueous media. J Hazard Mater B137:198–206 doi: 10.1016/j.hazmat.2006.01.054 CrossRefGoogle Scholar
  3. Dupont L, Bouanda J, Ghanbaja J, Dumonceau J, Aplincourt M (2004) Use of analytical microscopy to analyze the speciation of copper and chromium ions onto a low-cost biomaterial. J Colloid Interface Sci 279:418–424 doi: 10.1016/j.jcis.2004.06.069 CrossRefGoogle Scholar
  4. Escudero C, Fiol N, Poch J, Villaescusa I (2008) The kinetics of copper sorption onto yohimbe bark wastes. Int J Environ Pollut (in press)Google Scholar
  5. Fiol N, Villescusa I, Martínez M, Miralles N, Poch J, Serarols J (2006) Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone wastes. Sep Purif Technol 50:132–140 doi: 10.1016/j.seppur.2005.11.016 CrossRefGoogle Scholar
  6. Faur-Brasquet C, Reddad Z, Kadirvelu K, Le Clored P (2002) Modelling the adsorption of metal ions (Cu2+,Ni2+,Pb2+) onto ACCS using surface complexation models. Appl Surf Sci 196:356–365CrossRefGoogle Scholar
  7. Gérente C, Couespel du Mesnil P, Andrès Y, Thibault J, Le Cloirec P (2000) Removal of metal ions from aqueous solution on low cost natural polysaccharides. Sorption mechanism approach. React Funct Polym 46:135–144CrossRefGoogle Scholar
  8. Kikuchi Y, Qian Q, Machida M, Tatsumoto H (2006) Effect of ZnO loading to activated carbon on pB(II) adsorption from aqueous solution. Carbon 44:195–202 doi: 10.1016/j.carbon.2005.07.040 CrossRefGoogle Scholar
  9. Liu Y, Chang X, Guo Y, Meng S (2006) Biosorption and preconcentration of lead and cadmium on waste Chinese herb Pang Da Hai. J Hazard Mater B135:389–394 doi: 10.1016/j.hazmat.2005.11.078 CrossRefGoogle Scholar
  10. Montanher SF, Oliveira EA, Rollemberg MC (2005) Removal of metal ions from aqueous solutions by sorption onto rice bran. J Hazard Mater B117:207–211 doi: 10.1016/j.jhazmat.2004.09.015 CrossRefGoogle Scholar
  11. Nurchi VM, Floris C, Pinna R, Fiol N, Villaescusa I (2007) Metal ion uptake from aqueous solution by olive stones: a carbon-13 solid-state nuclear magnetic resonance and potentiometric study. Water Environ Res 79:2363–2367CrossRefGoogle Scholar
  12. Panda GC, Das SK, Chatterjee S, Maity PB, Bandopadhyay TS, Guha AK (2006) Adsorption of cadmium on husk of Lathyrus sativus: physico-chemical study. Colloids Surf B Biointerfaces 50(1):49–54 doi: 10.1016/j.colsurfb.2006.03.022 CrossRefGoogle Scholar
  13. Puigdomènech I (2004) Chemical Equilibrium software (1.6 Mb), updated on 18 February 2004, downloaded in May 2006
  14. Saeed A, Akhter MW, Iqbal M (2005) Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Sep Purif Technol 45:25–31 doi: 10.1016/j.seppur.2005.02.004 CrossRefGoogle Scholar
  15. Taty-Costodes VC, Fauduet H, Porte C, Delacroix A (2003) Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. J Hazard Mater B105:121–142 doi: 10.1016/j.jhazmat.2003.07.009 CrossRefGoogle Scholar
  16. Villaescusa I, Martínez M, Miralles N (2000) Heavy metal uptake from aqueous solution by cork and yohimbe bark wastes. J Chem Technol Biotechnol 75:812–816CrossRefGoogle Scholar
  17. Villaescusa I, Fiol N, Cristiani F, Floris C, Lai S, Nurchi VM (2002) Copper(II) and Nickel (II) uptake from aqueous solutions by cork wastes: a NMR and potentiometric study. Polyhedron 21:1363–1367CrossRefGoogle Scholar
  18. Villaescusa I, Fiol N, Martínez M, Miralles N, Poch J, Serarols J (2004) Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Res 38:992–1002 doi: 10.1016/j.watres.2003.10.040 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentUniversitat de GironaGironaSpain

Personalised recommendations