Journal of Forest Research

, Volume 16, Issue 3, pp 244–252 | Cite as

Forest land-use history affects the species composition and soil properties of old-aged hillock forests in Estonia

  • Jaanus Paal
  • Margit Turb
  • Tiina Köster
  • Elle Rajandu
  • Jaan Liira
Special Feature: Original article Approaches for forest disturbances studies: natural variability and tree regeneration


Decisions regarding forest typology, management and protection are often based on the structures of present-day forests, ignoring their successional history. Forests growing on kames, eskers and various moraine hillocks common in regions with Holocene glaciation are good examples of this approach. In Estonia, these forests locally persist as fragments of continuous primary forest, but usually they are situated on former slash-and-burn areas (bushlands) or reforested agricultural land. Our aim was to elucidate the strength of the effect of long-term land-use history on the present-day vegetation compositions of mature hillock forests and their soil chemistry. It appeared that even the mature secondary hillock forests are still distinct from historically continuous stands in terms of species composition. We discovered connections between stand history and species content in hillock forests as well as transformed soil properties. The carbon and nitrogen contents in the humus horizons of secondary forests are lower while their carbon–nitrogen ratios are higher than in continuous forests. The relationship between vegetation and stand history is demonstrated by the higher proportions of anthropophytic and apophytic species in the herb layer of the secondary forests. The presence of species that are tolerant of anthropogenic impact on the secondary hillock forests floor can also be partly explained by the effect of different species in the tree and shrub layers, gaps in the tree canopy, and the boundary effect caused by the small areas of forest patches, neighboring grasslands or fields. The extinction debt in secondary communities should also be considered.


Bushland Forest continuity Hemerophoby Slash-and-burn Stand composition 



The study was supported by Estonian Science Foundation grants (2339, 7878 and 8060), the target-financing project SF0180012s09, and by the European Union through the European Regional Development Fund (the Centre of Excellence FIBIR).


  1. Auniņš A, Bambe B, Eņģele L, Ikauniece S, Kabucis I, Laime B, Lārmanis V, Rēriha I, Rove I, Rūsiņa S, Salmiņa L, Sniedze R (2010) Eiropas Savienības aizsargājamie biotopi Latvijā. Latvijas Dabas fonds, RīgaGoogle Scholar
  2. Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:1–163CrossRefGoogle Scholar
  3. Brand T, Parker VT (1995) Scale and general laws of vegetation dynamics. Oikos 72:375–380CrossRefGoogle Scholar
  4. Brunet J (1993) Environmental and historical factors limiting the distribution of rare forest grasses in south Sweden. For Ecol Manag 61:263–275CrossRefGoogle Scholar
  5. Bušs K (1997) Forest ecosystems classification in Latvia. Proc Latvian Acad Sci Sect B 51:204–218Google Scholar
  6. Cajander AK (1909) Über Waldtypen. Fennia 28:1–176Google Scholar
  7. Cajander AK (1926) The theory of forest types. Acta For Fenn 29:1–108Google Scholar
  8. Cajander AK (1930) Wesen und Bedeutung der Wadtypen. Silva Fenn 1:1–175Google Scholar
  9. Clements FE (1916) Plant succession: an analysis of the development of vegetation. Carnegie Inst Wash Publ 242:1–512Google Scholar
  10. Cousins SAO, Eriksson O (2001) The influence of management history and habitat on plant species richness in a rural hemiboreal ladscape, Sweden. Landsc Ecol 17:517–529CrossRefGoogle Scholar
  11. Delcamp M, Gourlet-Fleury S, Flores O, Garnier E (2008) Can functional classification of tropical trees predict population dynamics after disturbance? J Veg Sci 19:209–220CrossRefGoogle Scholar
  12. Dierschke H (1994) Pflanzensoziologie. Grundlagen und Methoden. Verlag Eugen Ulmer, StuttgartGoogle Scholar
  13. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  14. Ejrnæs R, Liira J, Poulsen RS, Nygaard B (2008) When has an abandoned field become a semi-natural grassland or heathland? Environ Manag 42:707–716CrossRefGoogle Scholar
  15. Etverk I (1974) Metsa õpitakse tundma ja kasutama. In: Valk U, Eilart J (eds) Eesti metsad. Valgus, Tallinn, pp 40–60Google Scholar
  16. European Union Habitat Directive (1992) Council Directive 92/43/EEC of May, 21, 1992 on the conservation of natural habitats and of wild fauna and flora., accessed 17 Nov 2010
  17. Fedorchuk VN, Neshatayev VYu, Kuznetsova ML (2005) Forest ecosystems of the north-western regions of Russia: typology, dynamics, forest management features. Forestry Scientific Research Institute, St. Petersburg (in Russian)Google Scholar
  18. Feist MA, Phillippe LR, Busemeyer DT, Ebinger JE (2004) Vegetation survey of Dean Hills Nature Preserve, Fayette County, Illinois. Castanea 69:52–66CrossRefGoogle Scholar
  19. Frelich LE (2002) Forest dynamics and disturbance regimes. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. Frey TE-A (1973) The Finnish school and forest site-types. In: Whittaker RH (ed) Ordination and classification of communities (Handbook of Vegetation Science, vol V). Junk, The Hague, pp 403–433Google Scholar
  21. Harper KA, Macdonald SE, Burton PJ, Chen J, Brosofske KD, Saunders SC, Euskirchen ES, Roberts D, Jaiteh MS, Esseen PA (2005) Edge influence on forest structure and composition in fragmented landscapes. Conserv Biol 19:768–782CrossRefGoogle Scholar
  22. Harvey BD, Leduc A, Gauthier S, Bergeron Y (2002) Stand-landscape integration in natural disturbance-based management of the southern boreal forest. For Ecol Manag 155:369–385CrossRefGoogle Scholar
  23. Heikinheimo O (1987) The impact of swidden cultivation on forests in Finland—extracts. Suomen Antropol 4:199–206Google Scholar
  24. Heikkinen RK (1991) Multivariate analysis of esker vegetation in southern Häme, S Finland. Ann Bot Fenn 28:201–224Google Scholar
  25. Herlin IS (2001) Approaches to forest edges as dynamic structures and functional concepts. Landscape Res 26:27–43CrossRefGoogle Scholar
  26. Honnay O, Jacquemyn H, Bossuyt B, Hermy M (2005) Forest fragmentation effects on patch occupancy and population viability of herbaceous plant species. New Phytol 166:723–736PubMedCrossRefGoogle Scholar
  27. Ingerpuu N, Vellak K (eds) (1998) Eesti sammalde määraja. Eesti Loodusfoto, TartuGoogle Scholar
  28. Jalas J (1955) Hemerobe and hemerochore Pflanzenarten. Acta Soc Pro Fauna Flora Fenn 72:1–15Google Scholar
  29. Jõgi J, Tarand A (1995) Nüüdiskliima. In: Raukas A (ed) Eesti. Loodus. Valgus & Eesti Entsüklopeediakirjastus, Tallinn, pp 183–216Google Scholar
  30. Karu A, Muiste L (1958) Eesti metsakasvukohatüübid. Eesti Riiklik Kirjastus, TallinnGoogle Scholar
  31. Katus A, Tappo E (eds) (1965) Eesti metsa-kasvukohatüübid. Eesti NSV Ministrite Nõukogu Metsanduse ja Looduskaitse Peavalitsus, TallinnGoogle Scholar
  32. Klute A (ed) (1986) Methods of soil analysis. Part 1. Physical and mineralogical methods. Soil Science Society of America & American Society of Agronomy, MadisonGoogle Scholar
  33. Kõlli R (2002) Productivity and humus status of forest soils in Estonia. For Ecol Manag 171:169–179CrossRefGoogle Scholar
  34. Kukk T (1999) Eesti taimestik. Teaduste Akadeemia Kirjastus, TartuGoogle Scholar
  35. Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Rodà F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571PubMedCrossRefGoogle Scholar
  36. Laasimer L (1965) Eesti NSV taimkate. Valgus, TallinnGoogle Scholar
  37. Laasimer L, Masing V (1995) Taimestik ja taimkate. In: Raukas A (ed) Eesti. Loodus. Valgus & Eesti Entsüklopeediakirjastus, Tallinn, pp 364–396Google Scholar
  38. Leht M (ed) (2007) Eesti taimede määraja. Eesti Loodusfoto, TartuGoogle Scholar
  39. Liira J, Kohv K (2010) Stand characteristics and biodiversity indicators along the productivity gradient in boreal forests: defining a critical set of indicators for the monitoring of habitat nature quality. Plant Biosyst 144:211–220Google Scholar
  40. Liira J, Sepp T (2009) Indicators of structural and habitat natural quality in boreo-nemoral forests along the management gradient. Ann Bot Fenn 46:308–325Google Scholar
  41. Liira J, Sepp T, Parrest O (2007) The forest structure and ecosystem quality in conditions of anthropogenic disturbance along productivity gradient. For Ecol Manag 250:34–46CrossRefGoogle Scholar
  42. Lippmaa T (1933) Taimeühingute uurimise metoodika ja Eesti taimeühingute klassifikatsiooni põhijooned. Loodusuurijate Seltsi Aruanded 40:1–169Google Scholar
  43. Lõhmus E (1969) Mõnedest metsade klassifitseerimise printsiipidest Eesti NSV tingimustes. In: Trass H (ed) Loodusuurijate Seltsi aastaraamat. Valgus, Tallinn, 59:168–178Google Scholar
  44. Lõhmus E (1974) Metsad rabadest nõmmede ja loopealseteni. In: Valk U, Eilart J (eds) Eesti metsad. Valgus, Tallinn, pp 60–98Google Scholar
  45. Lõhmus E (2004) Eesti metsakasvukohatüübid, 2nd edn. Eesti Loodusfoto, TartuGoogle Scholar
  46. Mander Ü, Reintam L (2001) Development of Estonian landscapes. In: Mander Ü, Printsmann A, Palang H (eds) Development of European landscapes. IALE European Conference Proceedings, Publicationes Instituti Geographici Universitatis Tartuensis 92, vol I. Tartu Ülikooli Kirjastus, Tartu, pp 25–31Google Scholar
  47. Matas CD (2004) Dynamics of nutrients in slash and burn agroforestry in Koli National Park. Tutkittu ja tuntematon Koli. Metsantutkimuslaitoksen tiedonantoja. Finnish Forest Research Institute, Helsinki, 915:29–46Google Scholar
  48. Maxwell JF (2004) A synopsis of the vegetation of Thailand. Nat Hist J Chulalongkorn Univ 4:19–29Google Scholar
  49. McCune B, Mefford MJ (2006) PC-ORD. Multivariate analysis of ecological data, v.5.20. MjM Software, Gleneden BeachGoogle Scholar
  50. Meier E, Paal J, Liira J, Jüriado I (2005) Influence of tree stand age and management on the species diversity in Estonian eutrophic alvar and boreo-nemoral Pinus sylvestris forests. Scand J For Res 20:135–144CrossRefGoogle Scholar
  51. Meikar T, Uri V (2000) Of the management of bushland in Estonia. In: Meikar T, Etverk I (eds) Proceedings of the Academical Forestry Society, XI. Estonian forests and forestry at the turn of the Millenium. Forest Research Institute of Estonian Agricultural University, Tartu, pp 103–120Google Scholar
  52. Mikola P (1982) Application of vegetation science to forestry. In: Jahn G (ed) Vegetation science in forestry. Junk, The Hague, pp 199–224Google Scholar
  53. Oberdorfer, E (1990) Pflanzensoziologische Excursionsflora, 6th edn. Verlag Eulen Ulmer, StuttgartGoogle Scholar
  54. Ovaskainen O, Hanski I (2004) Metapopulation dynamics in highly fragmented landscapes. In: Hanski I, Gaggiotti OE (eds) Ecology, genetics, and evolution of metapopulations. Elsevier, BurlingtonGoogle Scholar
  55. Paal J (2007) Loodusdirektiivi elupaigatüüpide käsiraamat. Auratrükk, TallinnGoogle Scholar
  56. Paal J, Rooma I, Turb M (2004a) Sürjametsadest Otepää kõrgustikul. Metsanduslikud Uurimused/Forestry Studies 40:89–103Google Scholar
  57. Paal J, Rooma I, Turb M (2004b) Kas Karula kuplitel kasvab sürjametsi? Eesti Loodusuurijate Seltsi Aastaraamat 82:90–131Google Scholar
  58. Paal J, Rajandu E, Köster T (2010) Vegetation-environment relationship in Estonian Hepatica site type forests in the light of A. K. Cajander’s forest site type approach. Balt For 16:194–208Google Scholar
  59. Påhlsson L (ed) (1998) Vegetationstyper i Norden (TemaNord 1998:510). Nordisk Ministerråd, KøbenhavnGoogle Scholar
  60. Pärtel M, Helm A, Reitalu T, Liira J, Zobel M (2007) Grassland diversity related to the Late Iron Age human population density. J Ecol 95:574–582CrossRefGoogle Scholar
  61. Rajakorpi A (1987) Topographic, microclimatic and edaphic control of the vegetation in the central part of the Hämeenkangas esker complex, western Finland. Acta Bot Fenn 134:1–70Google Scholar
  62. Reintam L (1995) Muldade kujunemine. In: Raukas A (ed) Eesti. Loodus. Valgus & Eesti Entsüklopeediakirjastus, Tallinn, pp 419–429Google Scholar
  63. Sepp T, Liira J (2009) Vanade salumetsade rohurinde koosseis ja seda mõjutavad tegurid. Metsanduslikud Uurimused/Forestry Studies 50:23–41CrossRefGoogle Scholar
  64. Sukopp H (1969) Der Einfluß des Menschen auf die Vegetation. Vegetatio 17:360–371CrossRefGoogle Scholar
  65. ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide. Biometris/Wageningen/České BudějoviceGoogle Scholar
  66. Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66CrossRefGoogle Scholar
  67. Troska G (1987) Eesti külad XIX sajandil. Ajaloolis etnograafiline uurimus. Eesti Raamat, TallinnGoogle Scholar
  68. van der Maarel E (1988) Vegetation dynamics: patterns in time and space. Vegetatio 77:7–19CrossRefGoogle Scholar
  69. van Reeuwijk LP (ed) (1995) Procedures for soil analysis (Technical Paper 9). ISRIC, WageningenGoogle Scholar
  70. Vorob’eva LA (1998) Khimicheski analiz pochv. Izdatel’stvo Moskovskogo Universiteta, Moskva (in Russian)Google Scholar
  71. Webb KT, Marshall LB (1999) Ecoregions and ecodistricts of Nova Scotia. Crops and Livestock Research Centre/Indicators and Assessment Office, Truro/HullGoogle Scholar
  72. WRB (2006) World reference base of soil resources. World Soil Resour Rep 103:1–128Google Scholar

Copyright information

© The Japanese Forest Society and Springer 2011

Authors and Affiliations

  • Jaanus Paal
    • 1
  • Margit Turb
    • 2
  • Tiina Köster
    • 3
  • Elle Rajandu
    • 1
  • Jaan Liira
    • 1
  1. 1.Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
  2. 2.Otepää Nature ParkOtepääEstonia
  3. 3.Agricultural Research CentreSakuEstonia

Personalised recommendations