Advertisement

Genetische epileptische Enzephalopathien des Säuglingsalters

  • Steffen SyrbeEmail author
Leitthema
  • 17 Downloads

Zusammenfassung

Epileptische Enzephalopathien des Säuglingsalters sind eine heterogene Gruppe von Erkrankungen mit früh beginnenden epileptischen Anfällen und Störungen der motorischen und kognitiven Entwicklung. Die Klassifikation in spezifische Epilepsiesyndrome nach elektroklinischen Kriterien bildet nicht alle dieser Erkrankungen ab. Parallel wird eine steigende Zahl dieser infantilen Enzephalopathien monogenen Ursachen zugeordnet. Die Kenntnis des genetischen Hintergrundes erlaubt eine Einteilung der Enzephalopathien nach pathophysiologischen zellulären Ursachen, kann den diagnostischen Prozess erleichtern und die Therapieentscheidung unterstützen. Aufgrund der geringen Genotyp-Phänotyp-Korrelation zwischen monogener Erkrankung und elektroklinischem Syndrom sind weitere Studien notwendig, um die Bedeutung genetischer Biomarker für die Therapie und langfristige Prognose zu bestimmen.

Schlüsselwörter

Epileptische Enzephalopathie Monogene Ursache Kinder Panel Exom 

Genetic epileptic encephalopathies of infancy

Abstract

Epileptic encephalopathies of infancy comprise a heterogeneous group of neurodevelopmental disorders characterized by early epileptic seizures and disorders of motor and cognitive development. The classification into specific epileptic syndromes according to electroclinical criteria does not reflect all of the known infantile epilepsies. In parallel, an increasing number of less well-defined genetic encephalopathies from monogenic causes have been identified. Knowledge of the genetic background enables a classification of encephalopathies according to pathophysiological cellular causes, can shorten the diagnostic work-up and help in guiding treatment. Because of the low genotype-phenotype correlation between a monogenic disease and an electroclinical syndrome further studies are needed to determine the importance of genetic biomarkers for the treatment and long-term prognosis.

Keywords

Epileptic encephalopathy Monogenic etiology Children Panel Exome 

Notes

Danksagung

Ich danke der Dietmar Hopp Stiftung für finanzielle Unterstützung für die Erforschung der Grundlagen epileptischer Enzephalopathien. Ich bedanke mich bei Dr. Ulrike Mütze, Dr. Annick Klabunde-Cherwon, Dr. Elisabeth Schuler, Dr. Henje Döring und Prof. Dr. Johannes Lemke für hilfreiche Kommentare zum Manuskript.

Förderung

Finanzielle Unterstützung für die Erforschung der Grundlagen epileptischer Enzephalopathien (Projekt: 1DH1813319) leistete die Dietmar Hopp Stiftung.

Einhaltung ethischer Richtlinien

Interessenkonflikt

S. Syrbe gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Bahi-Buisson N, Bienvenu T (2012) CDKL5-related disorders: from clinical description to molecular genetics. Mol Syndromol 2:137–152PubMedGoogle Scholar
  2. 2.
    Bayat A, Hjalgrim H, Moller RS (2015) The incidence of SCN1A-related Dravet syndrome in Denmark is 1:22,000: a population-based study from 2004 to 2009. Epilepsia 56:e36–e39CrossRefGoogle Scholar
  3. 3.
    Berg AT, Berkovic SF, Brodie MJ et al (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 51:676–685CrossRefGoogle Scholar
  4. 4.
    Berg AT, Chakravorty S, Koh S et al (2018) Why west? Comparisons of clinical, genetic and molecular features of infants with and without spasms. PLoS ONE 13:e193599CrossRefGoogle Scholar
  5. 5.
    Boutry-Kryza N, Labalme A, Ville D et al (2015) Molecular characterization of a cohort of 73 patients with infantile spasms syndrome. Eur J Med Genet 58:51–58CrossRefGoogle Scholar
  6. 6.
    Brunklaus A, Ellis R, Reavey E et al (2012) Prognostic, clinical and demographic features in SCN1A mutation-positive Dravet syndrome. Brain 135:2329–2336CrossRefGoogle Scholar
  7. 7.
    De Kovel CGF, Syrbe S, Brilstra EH et al (2017) Neurodevelopmental disorders caused by de novo variants in KCNB1 genotypes and phenotypes. JAMA Neurol 74:1228–1236CrossRefGoogle Scholar
  8. 8.
    Eltze CM, Chong WK, Cox T et al (2013) A population-based study of newly diagnosed epilepsy in infants. Epilepsia 54:437–445CrossRefGoogle Scholar
  9. 9.
    Epi4K Consortium, Epilepsy Phenome/Genome Project, Allan AS et al (2013) De novo mutations in epileptic encephalopathies. Nature 501:217–221CrossRefGoogle Scholar
  10. 10.
    Fitzgerald MP, Smith D, Møller RS, Mcginnis E, Gunning B, Rubboli G et al (2017) Response to treatment in patients with KCNT1-related epilepsy. AES Annual Meetings 2017.Google Scholar
  11. 11.
    French JA, Lawson JA, Yapici Z et al (2016) Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet 388:2153–2163CrossRefGoogle Scholar
  12. 12.
    Gaily E, Lommi M, Lapatto R et al (2016) Incidence and outcome of epilepsy syndromes with onset in the first year of life: a retrospective population-based study. Epilepsia 57:1594–1601CrossRefGoogle Scholar
  13. 13.
    Gardella E, Marini C, Trivisano M et al (2018) The phenotype of SCN8A developmental and epileptic encephalopathy. Baillieres Clin Neurol 91:e1112–e1124Google Scholar
  14. 14.
    Helbig KL, Farwell Hagman KD, Shinde DN et al (2016) Diagnostic exome sequencing provides a molecular diagnosis for a significant proportion of patients with epilepsy. Genet Med 18:898–905CrossRefGoogle Scholar
  15. 15.
    Jozwiak S, Kotulska K, Domanska-Pakiela D et al (2011) Antiepileptic treatment before the onset of seizures reduces epilepsy severity and risk of mental retardation in infants with tuberous sclerosis complex. Eur J Paediatr Neurol 15:424–431CrossRefGoogle Scholar
  16. 16.
    Ko A, Youn SE, Kim SH et al (2018) Targeted gene panel and genotype-phenotype correlation in children with developmental and epileptic encephalopathy. Epilepsy Res 141:48–55CrossRefGoogle Scholar
  17. 17.
    Lemke JR, Syrbe S (2015) Epileptic encephalopathies in childhood: the role of genetic testing. Semin Neurol 35:310–322CrossRefGoogle Scholar
  18. 18.
    Lindy AS, Stosser MB, Butler E et al (2018) Diagnostic outcomes for genetic testing of 70 genes in 8565 patients with epilepsy and neurodevelopmental disorders. Epilepsia 59:1062–1071CrossRefGoogle Scholar
  19. 19.
    McTague A, Howell KB, Cross JH et al (2016) The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurol 15:304–316CrossRefGoogle Scholar
  20. 20.
    Mulkey SB, Ben-Zeev B, Nicolai J et al (2017) Neonatal nonepileptic myoclonus is a prominent clinical feature of KCNQ2 gain-of-function variants R201C and R201H. Epilepsia 58:436–445CrossRefGoogle Scholar
  21. 21.
    Olson HE, Kelly M, Lacoursiere CM et al (2017) Genetics and genotype-phenotype correlations in early onset epileptic encephalopathy with burst suppression. Ann Neurol 81:419–429CrossRefGoogle Scholar
  22. 22.
    Parrini E, Marini C, Mei D et al (2017) Diagnostic targeted resequencing in 349 patients with drug-resistant pediatric epilepsies identifies causative mutations in 30 different genes. Hum Mutat 38:216–225CrossRefGoogle Scholar
  23. 23.
    Scheffer IE, Berkovic S, Capovilla G et al (2017) ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58:512–521CrossRefGoogle Scholar
  24. 24.
    Stamberger H, Nikanorova M, Willemsen MH et al (2016) STXBP1 encephalopathy: a neurodevelopmental disorder including epilepsy. Baillieres Clin Neurol 86:954–962Google Scholar
  25. 25.
    Stanek D, Lassuthova P, Sterbova K et al (2018) Detection rate of causal variants in severe childhood epilepsy is highest in patients with seizure onset within the first four weeks of life. Orphanet J Rare Dis 13:71CrossRefGoogle Scholar
  26. 26.
    Syrbe S, Harms FL, Parrini E et al (2017) Delineating SPTAN1 associated phenotypes: from isolated epilepsy to encephalopathy with progressive brain atrophy. Brain 140:2322–2336CrossRefGoogle Scholar
  27. 27.
    Syrbe S, Hedrich UBS, Riesch E et al (2015) De novo loss- or gain-of-function mutations in KCNA2 cause epileptic encephalopathy. Nat Genet 47:393–399CrossRefGoogle Scholar
  28. 28.
    Syrbe S, Zhorov BS, Bertsche A et al (2016) Phenotypic variability from benign infantile epilepsy to Ohtahara syndrome associated with a novel mutation in SCN2A. Mol Syndromol 7:182–188CrossRefGoogle Scholar
  29. 29.
    Weckhuysen S, Ivanovic V, Hendrickx R et al (2013) Extending the KCNQ2 encephalopathy spectrum: clinical and neuroimaging findings in 17 patients. Baillieres Clin Neurol 81:1697–1703Google Scholar
  30. 30.
    Wolff M, Johannesen KM, Hedrich UBS et al (2017) Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 140:1316–1336CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Epilepsiezentrum mit Epilepsieambulanz, Sektion für Neuropädiatrie und Stoffwechselmedizin, Zentrum für Kinder- und JugendmedizinUniversitätsklinikum HeidelbergHeidelbergDeutschland

Personalised recommendations