Advertisement

Zeitschrift für Epileptologie

, Volume 27, Issue 1, pp 7–18 | Cite as

Evaluation von Parametern der Hirnstimulation

Tierexperimentelle Epilepsiemodelle
  • K.H. Somerlik-Fuchs
  • T. Stieglitz
  • A. Schulze-Bonhage
Leitthema

Zusammenfassung

Die Hirnstimulation hat das Potenzial, Linderung bei bislang untherapierbaren neurologischen Krankheiten zu erzielen. Die Erfolge bei der Behandlung von Bewegungsstörungen haben dazu beigetragen, dass viele Forschungsgruppen die elektrische Stimulation weiteruntersuchen und ihren Einsatz u. a. auch für die Therapie von Epilepsien prüfen. Die Arbeit mit Tiermodellen ist dabei essenziell. Da die Effekte elektrischer Stimulationen auf Hirngewebe sehr komplex sind und der mögliche Parameterraum groß ist, können optimale Paradigmen nur durch tierexperimentelle Studien systematisch entwickelt werden. Angesichts der multifaktoriellen Ätiologie von Epilepsien können unterschiedliche Modelle dazu dienen, die Krankheit bestmöglich nachzubilden. Diese Übersichtsarbeit stellt verschiedene Epilepsiemodelle dar, die zur Erprobung von Stimulationstherapien verwendet wurden, und erörtert, welche Stimulationsparadigmen das größte Potenzial gezeigt haben.

Schlüsselwörter

Elektrische Stimulation Anfälle Ratten Katzen Stimulationsparadigmen 

Evaluation of brain stimulation paradigms

Experimental epilepsy models

Abstract

Brain stimulation has the potential to improve as yet untreatable neurological disorders. The success of the treatment of movement disorders has influenced further investigations of electrical stimulation for application in the therapy of epilepsy. Working with animal models is indispensable. As mechanisms by which electrical stimulation modulates brain activity are complex and possible stimulation forms are numerous, optimal paradigms can only be developed systematically using experimental studies in animals. According to the multifactorial etiologies underlying epilepsies, various models can best represent the disease. This review provides an overview of epilepsy models that have been used for investigating stimulation therapies and of stimulation paradigms showing the highest potential.

Keywords

Electric stimulation Seizures Rats Cats Stimulation paradigms 

Notes

Danksagung

Diese Arbeit wurde gefördert vom Deutschen Bundesministerium für Bildung und Forschung (BMBF) 01GQ0830 BFNT Freiburg/Tübingen und der Deutschen Forschungsgesellschaft (DFG) im Rahmen der Deutschen Exzellenz Initiative als Teil des Clusters BrainLinks-BrainTools (ExC1086).

Einhaltung ethischer Richtlinien

Interessenkonflikt. K.H. Somerlik-Fuchs: Beschäftigungsverhältnis bei inomed Medizintechnik GmbH, Emmendingen, Deutschland. A. Schulze-Bonhage: kein Konflikt. T. Stieglitz: Gründungsgesellschafter und Beiratsmitglied der Cortec GmbH, Freiburg, Deutschland. Der Beitrag enthält keine Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Bantli H, Bloedel JR, Anderson G et al (1978) Effects of stimulating the cerebellar surface on the activity in penicillin foci. J Neurosurg 48:69–84PubMedCrossRefGoogle Scholar
  2. 2.
    Bragin A, Engel J, Wilson CL et al (1999) Hippocampal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid-treated rats with chronic seizures. Epilepsia 40:127–137PubMedCrossRefGoogle Scholar
  3. 3.
    Berényi A, Belluscio M, Mao D, Buzsáki G (2012) Closed-loop control of epilepsy by transcranial electrical stimulation. Science 337:735–737PubMedCrossRefGoogle Scholar
  4. 4.
    Cordeiro JG, Somerlik KH, Cordeiro KK et al (2013) Modulation of excitability by continuous low- and high-frequency stimulation in fully hippocampal kindled rats. Epilepsy Res. http://dx.doi.org/10.1016/j.eplepsyres.2013.08.014Google Scholar
  5. 5.
    Cortez MA, Snead OC Ill (2006) Pharmacologic models of generalized absence seizures in rodents. In: Pitkänen A, Schwarzkroin PA, Moshé SL (Hrsg) Models of seizures and epilepsy. Elsevier, Oxford, S 111–126Google Scholar
  6. 6.
    Cuellar-Herrera M, Neri-Bazan L, Rocha LL (2006) Behavioral effects of high frequency electrical stimulation of the hippocampus on electrical kindling in rats. Epilepsy Res 72:10–17PubMedCrossRefGoogle Scholar
  7. 7.
    Dow RS, Fernández-Guradiola A, Manni E (1962) The influence of the cerebellum on experimental epilepsy. Electroencephalogr Clin Neurophysiol 14:383–398PubMedCrossRefGoogle Scholar
  8. 8.
    Dow RS, Fernández-Guradiola A, Manni E (1962) The production of cobalt experimental epilepsy in rat. Electroencephalogr Clin Neurophysiol 14:399–407PubMedCrossRefGoogle Scholar
  9. 9.
    Dudek FE, Clark S, Williams PA, Grabenstatter HL (2006) Kainate-induced status epilepticus: a chronic model of acquired epilepsy. In: Pitkänen A, Schwarzkroin PA, Moshé SL (Hrsg) Models of seizures and epilepsy. Elsevier, Oxford, S 415–432Google Scholar
  10. 10.
    Durand D (1986) Electrical stimulation can inhibit synchronized neuronal activity. Brain Res 382:139–144PubMedCrossRefGoogle Scholar
  11. 11.
    Durand DM, Jensen A, Bikson M (2006) Suppression of neural activity with high frequency stimulation. Proc 28th IEEE EMBS Ann Int Conf New York City, USAGoogle Scholar
  12. 12.
    Feddersen B, Vercueil L, Noachtar S et al (2007) Controlling seizures is not controlling epilepsy: a parametric study of deep brain stimulation for epilepsy. Neurobiol Dis 27:292–300PubMedCrossRefGoogle Scholar
  13. 13.
    Fisher RS (1989) Animal models of the epilepsies. Brain Res Rev 14:245–278PubMedCrossRefGoogle Scholar
  14. 14.
    Gaito J, Nobrega JN, Gaito ST (1980) Interference effect of 3 Hz brain stimulation on kindling behavior induced by 60 Hz stimulation. Epilepsia 21:73–84PubMedCrossRefGoogle Scholar
  15. 15.
    Ghai RS, Bikson M, Durand DM (2000) Effects of applied electric fields on low-calcium epileptiform activity in the CA1 region of rat hippocampal slices. J Neurophysiol 84:274–280PubMedGoogle Scholar
  16. 16.
    Ghorbani P, Mohammad-Zadeh M, Mirnajafi-Zadeh J, Fathollahi Y (2007) Effect of different patterns of low-frequency stimulation on piriform cortex kindled seizures. Neurosci Lett 425:162–166PubMedCrossRefGoogle Scholar
  17. 17.
    Goddard GV (1967) Development of epileptic seizures through brain stimulation at low intensity. Nature 214:1020–1021PubMedCrossRefGoogle Scholar
  18. 18.
    Goddard G, McIntyre DC, Leech CK (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25:295–330PubMedCrossRefGoogle Scholar
  19. 19.
    Godlevskii LS, Stepanenko KL, Lobasyuk BA et al (2004) The effects of electrical stimulation of the paleocerebellar cortex on penicillin-induced convulsive activity in rats. Neurosci Behav Physiol 34:797–802PubMedCrossRefGoogle Scholar
  20. 20.
    Jahangiri A, Durand DM (2011) Phase resetting analysis of high potassium epileptiform activity in CA3 region of the rat hippocampus. Int J Neural Syst 21:127–138PubMedCrossRefGoogle Scholar
  21. 21.
    Jefferys JG, Walker MC (2006) Tetanus toxin model of focal epilepsy. In: Pitkänen A, Schwarzkroin PA, Moshé SL (Hrsg) Models of seizures and epilepsy. Elsevier, Oxford, S 407–414Google Scholar
  22. 22.
    Kalitzin S, Velis D, Suffczynski P et al (2005) Electrical brain-stimulation paradigm for estimating the seizure onset site and the time to ictal transition in temporal lobe epilepsy. Clin Neurophysiol 116:718–728PubMedCrossRefGoogle Scholar
  23. 23.
    Lado FA (2006) Chronic bilateral stimulation of the anterior thalamus of kainate-treated rats increases seizure frequency. Epilepsia 47:27–32PubMedCrossRefGoogle Scholar
  24. 24.
    La Grutta V, Sabatino M (1988) Focal hippocampal epilepsy: effect of caudate stimulation. Exp Neurol 99:38–49CrossRefGoogle Scholar
  25. 25.
    Lian J, Bikson M, Sciortino C et al (2003) Local suppression of epileptiform activity by electrical stimulation in rat hippocampus in vitro. J Physiol 547:427–434PubMedCrossRefGoogle Scholar
  26. 26.
    Liu H, Yang A, Meng D et al (2012) Stimulation of the anterior nucleus of the thalamus induces changes in amino acids in the hippocampi of epileptic rats. Brain Res 477:37–44CrossRefGoogle Scholar
  27. 27.
    Liu H, Yang A, Meng D et al (2012) Effect of anterior nucleus of thalamus stimulation on glucose metabolism in hippocampus of epileptic rats. Chin Med J 125:3081–3086PubMedGoogle Scholar
  28. 28.
    Löscher W (2011) Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 20:359–368PubMedCrossRefGoogle Scholar
  29. 29.
    Lüttjohann A, Luijtelaar G van (2013) Thalamic stimulation in absence epilepsy. Epilepsy Res 106:136–145PubMedCrossRefGoogle Scholar
  30. 30.
    Magdaleno-Madrigal VM, Valdés-Cruz A, Martínez-Vargas et al (2002) Effect of electrical stimulation of the nucleus of the solitary tract on the development of electrical amygdaloid kindling in the cat. Epilepsia 43:964–969PubMedCrossRefGoogle Scholar
  31. 31.
    McIntyre DC (2006) The kindling phenomenon. In: Pitkänen A, Schwarzkroin PA, Moshé SL (Hrsg) Models of seizures and epilepsy. Elsevier, Oxford, S 351–363Google Scholar
  32. 32.
    Mirski MA, Rossel LA, Terry JB, Fischer RS (1997) Anticonvulsant effect of anterior thalamic high frequency electrical stimulation in the rat. Epilepsy Res 28:89–100PubMedCrossRefGoogle Scholar
  33. 33.
    Mirski MA, Ziai WC, Chiang J et al (2009) Anticonvulsant serotonergic and deep brain stimulation in anterior thalamus. Seizure 18:64–70PubMedCrossRefGoogle Scholar
  34. 34.
    Mohammad-Zadeh M, Mirnajafi-Zadeh J, Fathollahi Y et al (2007) Effect of low frequency stimulation of perforant path on kindling rate and synaptic transmission in the dentate gyrus during kindling acquisition in rats. Epilepsy Res 75:154–161PubMedCrossRefGoogle Scholar
  35. 35.
    Mutani R, Fariello R (1969) Effect of low frequency caudate stimulation on the EEG of epileptic neocortex. Brain Res 14:749–753PubMedCrossRefGoogle Scholar
  36. 36.
    Nadler JV, Perry BW, Cotman CW (1978) Intraventricular kainic acid preferentially destroys hippocampal cells. Nature 271:676–677PubMedCrossRefGoogle Scholar
  37. 37.
    Nanobashvili Z, Chachua T, Nanobashvili A et al (2003) Suppression of limbic motor seizures by electrical stimulation in thalamic reticular nucleus. Exp Neurol 181:224–230PubMedCrossRefGoogle Scholar
  38. 38.
    Nelson TS, Suhr CL, Freestone DR et al (2011) Closed-loop seizure control with very high frequency electrical stimulation at seizure onset in the GAERS model of absence epilepsy. Int J Neural Syst 21:163–173PubMedCrossRefGoogle Scholar
  39. 39.
    Nishida N, Huang ZL, Mikuni N et al (2007) Deep brain stimulation of the posterior hypothalamus activates the histaminergic system to exert antiepileptic effect in rat pentylenetetrazol model. Exp Neurol 205:132–144PubMedCrossRefGoogle Scholar
  40. 40.
    Racine RJ (1972) Modification of seizure activity by electrical stimulation: II motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294PubMedCrossRefGoogle Scholar
  41. 41.
    Reimer GR, Grimm RJ, Dow RS (1967) Effects of cerebellar stimulation on cobalt-induced epilepsy in the cat. Electroencephalogr Clin Neurophysiol 23:456–462PubMedCrossRefGoogle Scholar
  42. 42.
    Rubio C, Custodio V, Juárez F, Paz C (2004) Stimulation of the superior cerebellar peduncle during the development of amygdaloid kindling in rats. Brain Res 1010:151–155PubMedCrossRefGoogle Scholar
  43. 43.
    Sabatino M, La Grutta V, Ferraro G, La Grutta G (1986) Relations between basal ganglia and hippocampus: action of substantia nigra and pallidum. Rev Electroencephalogr Neurophysiol Clin 16:179–190PubMedCrossRefGoogle Scholar
  44. 44.
    Sabatino M, Savatteri V, Liberti G et al (1986) Effects of substantia nigra and pallidum on hippocampal interictal activity in the cat. Neurosci Lett 64:293–298PubMedCrossRefGoogle Scholar
  45. 45.
    Sabatino M, Gravante G, Ferraro G et al (1988) Inhibitory control by substantia nigra of generalized epilepsy in the cat. Epilepsy Res 2:380–386PubMedCrossRefGoogle Scholar
  46. 46.
    Sabatino M, Gravante G, Ferraro G et al (1989) Striatonigral suppression of focal hippocampal epilepsy. Neurosci Lett 98:285–290PubMedCrossRefGoogle Scholar
  47. 47.
    Sabatino M, Ferraro G, Vella N, La Grutta V (1990) Nigral influence on focal epilepsy. Neurophysiol Clin 20:189–201PubMedCrossRefGoogle Scholar
  48. 48.
    Shao J, Valenstein ES (1982) Long-term inhibition of kindled seizures by brain stimulation. Exp Neurol 76:376–392PubMedCrossRefGoogle Scholar
  49. 49.
    Shapari M, Mirnajafi-Zadeh J, Firoozabadi SMP, Yadollahpour A (2012) Effect of low-frequency electrical stimulation parameters on its anticonvulsant action during rapid perforant path kindling in rat. Epilepsy Res 99:69–77CrossRefGoogle Scholar
  50. 50.
    Shi LH, Luo F, Woodward D, Chang JY (2006) Deep brain stimulation of the substantia nigra pars reticulata exerts long lasting suppression of amygdala-kindled seizures. Brain Res 1090:202–207PubMedCrossRefGoogle Scholar
  51. 51.
    Somerlik KH, Cosandier-Rimélé D, Cordeiro JG et al (2011) Measuring epileptogenicity in kainic acid injected rats. Proc 5th Int IEEE EMBS Conf Neur Eng, Cancun, Mexico, S 188–191Google Scholar
  52. 52.
    Su Y, Radman T, Vaynshteyn J et al (2008) Effects of high-frequency stimulation on epileptiform activity in vitro: ON/OFF control paradigm. Epilepsia 49:1586–1593PubMedCrossRefGoogle Scholar
  53. 53.
    Sun HL, Zhang SH, Zhong K et al (2010) Mode-dependent effect of low-frequency stimulation targeting the hippocampal CA3 subfield on amygdala-kindled seizures in rats. Epilepsy Res 90:83–90PubMedCrossRefGoogle Scholar
  54. 54.
    Sunderam S, Chernyy N, Peixoto N et al (2009) Seizure entrainment with polarizing low frequency electric fields in a chronic animal epilepsy model. J Neural Eng 6:046009PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Takebayashi S, Hashizume K, Tanaka T, Hodozuka A (2007) Anti-convulsant effect of electrical stimulation and lesioning of the anterior thalamic nucleus on kainic acid-induced focal limbic seizure in rats. Epilepsy Res 74:163–170PubMedCrossRefGoogle Scholar
  56. 56.
    Takebayashi S, Hashizume K, Tanaka T, Hodozuka A (2007) The effect of electrical stimulation and lesioning of the anterior thalamic nucleus on kainic acid-induced focal cortical seizure status in rats. Epilepsia 48:348–358PubMedCrossRefGoogle Scholar
  57. 57.
    Toprani S, Durand DM (2013) Fiber tract stimulation can reduce epileptiform activity in an in-vitro bilateral hippocampal slice preparation. Exp Neurol 240:28–43PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Ullal GR, Ninchoji T, Uemura K (1989) Low frequency stimulation induces an increase in after-discharge thresholds in hippocampal and amygdaloid kindling. Epilepsy Res 3:232–235PubMedCrossRefGoogle Scholar
  59. 59.
    Usui N, Maesawa S, Kajita Y et al (2005) Suppression of secondary generalization of limbic seizures by stimulation of subthalamic nucleus in rats. J Neurosurg 102:1122–1129PubMedCrossRefGoogle Scholar
  60. 60.
    Velísek L, Velísková J, Stanton PK (2002) Low-frequency stimulation of the kindling focus delays basolateral amygdala kindling in immature rats. Neurosci Lett 326:61–63PubMedCrossRefGoogle Scholar
  61. 61.
    Velíšek L (2006) Models of chemically induced acute seizures. In: Pitkänen A, Schwarzkroin PA, Moshé SL (Hrsg) Models of seizures and epilepsy. Elsevier, Oxford, S 127–152Google Scholar
  62. 62.
    Vercueil L, Benazzouz A, Deransart C et al (1998) High-frequency stimulation of the subthalamic nucleus suppresses absence seizures in the rat: comparison with neurotoxic lesions. Epilepsy Res 31:39–46PubMedCrossRefGoogle Scholar
  63. 63.
    Wagner R 2nd, Feeney DM, Gullotta FP, Cote IL (1975) Suppression of cortical epileptiform activity by generalized and localized ECoG desynchronization. Electroencephalogr Clin Neurophysiol 39:499–506PubMedCrossRefGoogle Scholar
  64. 64.
    Weiss SB, Eidsath A, Li XL et al (1998) Quenching revisited: low level direct current inhibits amygdala-kindled seizures. Exp Neurol 154:185–192PubMedCrossRefGoogle Scholar
  65. 65.
    Wyckhuys T, De Smedt T, Claeys P et al (2007) High frequency deep brain stimulation in the hippocampus modifies seizure characteristics in kindled rats. Epilepsia 48:1543–1550PubMedCrossRefGoogle Scholar
  66. 66.
    Wyckhuys T, Raedt R, Vonck K et al (2010) Comparison of hippocampal deep brain stimulation with high (130 Hz) and low frequency (5 Hz) on afterdischarges in kindled rats. Epilepsy Res 88:239–246PubMedCrossRefGoogle Scholar
  67. 67.
    Yang LX, Jin CL, Zhu-Ge ZB et al (2006) Unilateral low-frequency stimulation of central piriform cortex delays seizure development induced by amygdaloid kindling in rats. Neuroscience 138:1089–1096PubMedCrossRefGoogle Scholar
  68. 68.
    Zhang SH, Sun HL, Fang Q et al (2009) Low-frequency stimulation of the hippocampal CA3 subfield is anti-epileptogenic and anti-ictogenic in rat amygdaloid kindling model of epilepsy. Neurosci Lett 455:51–55PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang Q, Wu ZC, Yu JT et al (2012) Mode-dependent effect of high-frequency electrical stimulation of the anterior thalamic nucleus on amygdala-kindled seizures in rats. Neuroscience 217:113–122PubMedCrossRefGoogle Scholar
  70. 70.
    Zhang Q, Wu ZC, Yu JT et al (2012) Anticonvulsant effect of unilateral anterior thalamic high frequency electrical stimulation on amygdala-kindled seizures in rat. Brain Res Bull 87:221–226PubMedCrossRefGoogle Scholar
  71. 71.
    Zhu-Ge ZB, Zhu YY, Wu DC et al (2007) Unilateral low-frequency stimulation of central piriform cortex inhibits amygdaloid-kindled seizures in Sprague-Dawley rats. Neuroscience 146:901–906PubMedCrossRefGoogle Scholar
  72. 72.
    Ziai WC, Sherman DL, Bhardwaj A et al (2005) Target-specific catecholamine elevation induced by anticonvulsant thalamic deep brain stimulation. Epilepsia 46:878–888PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • K.H. Somerlik-Fuchs
    • 1
    • 2
  • T. Stieglitz
    • 2
    • 3
  • A. Schulze-Bonhage
    • 1
    • 2
  1. 1.Epilepsiezentrum, NeurozentrumUniversitätsklinikum FreiburgFreiburgDeutschland
  2. 2.Exzellenzcluster BrainLinks-BrainToolsUniversität FreiburgFreiburgDeutschland
  3. 3.Institut für MikrosystemtechnikUniversität FreiburgFreiburgDeutschland

Personalised recommendations