Zeitschrift für Epileptologie

, Volume 26, Issue 4, pp 198–210 | Cite as

Präoperative Epilepsiediagnostik und Epilepsiechirurgie

Übersichten
  • 182 Downloads

Zusammenfassung

Zirka 35 % aller Epilepsiepatienten leiden an medikamentös-therapieresistenten Anfällen. Für viele dieser Patienten stellt die Epilepsiechirurgie eine hoch effektive und sichere Behandlungsoption dar. Bei den epilepsiechirurgisch behandelbaren Epilepsiesyndromen lassen sich 1) Epilepsien mit fokalen pathologischen Veränderungen, bei denen eine umschriebene Resektion durchgeführt werden kann, 2) Epilepsien, die extensive, oft multilobäre Resektionen oder Hemisphärektomien erfordern und 3) Epilepsien, bei denen lediglich eine Diskonnektionsoperation sinnvoll ist, unterscheiden. Voraussetzung für einen epilepsiechirurgischen Eingriff ist die exakte präoperative Epilepsiediagnostik; hierbei müssen die epileptogene Zone und die essenziellen Hirnregionen genau lokalisiert werden. In der präoperativen Epilepsiediagnostik wird zwischen einer nichtinvasiven (Phase I) und einer invasiven Abklärungsphase (Phase II) unterschieden. Bei der Mehrheit der Patienten kann bereits nach Phase I die Indikation für einen epilepsiechirurgischen Eingriff gestellt werden. Falls sich jedoch inkonklusive oder widersprüchliche Befunde ergeben, müssen in Phase II intrakranielle Elektroden zur Anwendung gebracht werden. Bei den operativen Techniken kann prinzipiell zwischen resektiven Verfahren, die potenziell kurativ einzuordnen sind, und diskonnektiven Verfahren, die lediglich palliativ angewendet werden, unterschieden werden. Trotz der Einführung neuer Antiepileptika sind die Ergebnisse der Epilepsiechirurgie bei entsprechender Patientenselektion wesentlich besser als die einer alleinigen Fortführung der antiepileptischen Pharmakotherapie.

Schlüsselwörter

Diagnostische Bildgebung Neurochirurgie Patientenselektion Anfälle Wiederauftreten 

Preoperative epilepsy evaluation and epilepsy surgery

Abstract

Approximately 35 % of epilepsy patients suffer from medically refractory seizures. For many of these patients epilepsy surgery represents a highly effective and safe therapy option. Epileptic syndromes which can be treated by epilepsy surgery can be differentiated into 1) epilepsies with focal pathological alterations for which a circumscribed resection can be carried out, 2) epilepsies which necessitates extensive, often multilobular resections or hemispherectomies and 3) epilepsies in which the only reasonably treatment is disconnection surgery. A prerequisite for surgical epilepsy interventions is an exact preoperative epilepsy evaluation by which the epileptogenic zone and the essential brain areas must be exactly localized. In preoperative epilepsy evaluation a differentiation is made between a non-invasive (phase I) and an invasive phase (phase II). In the majority of patients the indications for surgical epilepsy intervention can already be established after phase I; however, if the findings are inconclusive or contradictive, intracranial electrodes must be brought into use in phase II. The operative techniques can principally be differentiated into resective procedures which can be considered as potentially curative and disconnection procedures which are for palliative use only. Despite the introduction of new antiepileptic drugs the results of epilepsy surgery after careful patient selection are substantially better than continuation of antiepileptic pharmacotherapy alone.

Keywords

Diagnostic imaging Neurosurgery Patient selection Seizures Recurrence 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt. C. Baumgartner und S. Pirke geben an, dass kein Interessenkonflikt besteht. Das vorliegende Manuskript enthält keine Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Kwan P, Arzimanoglou A, Berg AT et al (2010) Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 51:1069–1077PubMedCrossRefGoogle Scholar
  2. 2.
    Engel J Jr, Wiebe S, French J et al (2003) Practice parameter: temporal lobe and localized neocortical resections for epilepsy: report of the Quality Standards Subcommittee of the American Academy of Neurology, in Association with the American Epilepsy Society and the American Association of Neurological Surgeons. Neurology 60:538–547PubMedCrossRefGoogle Scholar
  3. 3.
    Berg AT, Mathern GW, Bronen RA et al (2009) Frequency, prognosis and surgical treatment of structural abnormalities seen with magnetic resonance imaging in childhood epilepsy. Brain 132:2785–2797PubMedCrossRefGoogle Scholar
  4. 4.
    European Federation of Neurological Societies Task Force (2000) Pre-surgical evaluation for epilepsy surgery – European standards. European Federation of Neurological Societies Task Force. Eur J Neurol 7:119–122CrossRefGoogle Scholar
  5. 5.
    Wiebe S, Blume WT, Girvin JP, Eliasziw M (2001) A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med 345:311–318PubMedCrossRefGoogle Scholar
  6. 6.
    Wiebe S, Jette N (2012) Epilepsy surgery utilization: who, when, where, and why? Curr Opin Neurol 25:187–193PubMedCrossRefGoogle Scholar
  7. 7.
    Engel J Jr, McDermott MP, Wiebe S et al (2012) Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial. JAMA 307:922–930PubMedCrossRefGoogle Scholar
  8. 8.
    Baumgartner C, Elger CE, Hufnagel A et al (2000) Qualitätsleitlinien auf dem Gebiet der prächirugischen Epilepsiediagnostik und operativen Epilepsietherapie. Akt Neurol 27:88–89CrossRefGoogle Scholar
  9. 9.
    Labiner DM, Bagic AI, Herman ST et al (2010) Essential services, personnel, and facilities in specialized epilepsy centers – revised 2010 guidelines. Epilepsia 51:2322–2333PubMedCrossRefGoogle Scholar
  10. 10.
    Fountain NB, Van Ness PC, Swain-Eng R et al (2011) Quality improvement in neurology: AAN epilepsy quality measures: report of the Quality Measurement and Reporting Subcommittee of the American Academy of Neurology. Neurology 76:94–99PubMedCrossRefGoogle Scholar
  11. 11.
    Cross JH, Jayakar P, Nordli D et al (2006) Proposed criteria for referral and evaluation of children for epilepsy surgery: recommendations of the subcommission for pediatric epilepsy surgery. Epilepsia 47:952–959PubMedCrossRefGoogle Scholar
  12. 12.
    Kwan P, Arzimanoglou A, Berg AT et al (2010) Definition der pharmakoresistenten Epilepsie: Konsensusvorschlag der ad hoc-Task Force der ILAE-Kommission für Therapeutische Strategien. Akt Neurol 2010:372–381CrossRefGoogle Scholar
  13. 13.
    Krämer G (2010) Zur Neudefinition der pharmakoresistenten Epilepsie. Akt Neurol 37:369–371CrossRefGoogle Scholar
  14. 14.
    Gilliam FG, Albertson B (2011) Identifying epilepsy surgery candidates in the outpatient clinic. Epilepsy Behav 20:156–159PubMedCrossRefGoogle Scholar
  15. 15.
    Jette N, Wiebe S (2013) Update on the surgical treatment of epilepsy. Curr Opin Neurol 26:201–207PubMedCrossRefGoogle Scholar
  16. 16.
    Engel J Jr (1998) Etiology as a risk factor for medically refractory epilepsy: a case for early surgical intervention. Neurology 51:1243–1244PubMedCrossRefGoogle Scholar
  17. 17.
    Semah F, Picot MC, Adam C et al (1998) Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology 51:1256–1262PubMedCrossRefGoogle Scholar
  18. 18.
    Spencer SS (1996) Long-term outcome after epilepsy surgery. Epilepsia 37:807–813PubMedCrossRefGoogle Scholar
  19. 19.
    Stephen LJ, Kwan P, Brodie MJ (2001) Does the cause of localisation-related epilepsy influence the response to antiepileptic drug treatment? Epilepsia 42:357–362PubMedCrossRefGoogle Scholar
  20. 20.
    Baumgartner C (2012) Prächirurgische Epilepsiediagnostik und Epilepsiechirurgie. Klin Neurophysiol 43:120–130CrossRefGoogle Scholar
  21. 21.
    Baumgartner C (2009) Epilepsiechirurgie und Neurostimulation. J Neurol Neurochir Psychiatr 10:40–54Google Scholar
  22. 22.
    Lüders HO, Engel J Jr, Munari C (1993) General principles. In: Engel J Jr (Hrsg) Surgical treatment of the epilepsies, 2. Aufl. Raven, New York, S 137–153Google Scholar
  23. 23.
    Rosenow F, Luders H (2001) Presurgical evaluation of epilepsy. Brain 124:1683–1700PubMedCrossRefGoogle Scholar
  24. 24.
    Lüders HO (1992) Epilepsy surgery. Raven, New YorkGoogle Scholar
  25. 25.
    Baumgartner C, Pirker S (2012) Presurgical evaluation in adults: noninvasive. Handb Clin Neurol 108:841–866PubMedCrossRefGoogle Scholar
  26. 26.
    Kahane P, Spencer SS (2012) Invasive evaluation. Handb Clin Neurol 108:867–879PubMedCrossRefGoogle Scholar
  27. 27.
    Dworetzky BA, Reinsberger C (2011) The role of the interictal EEG in selecting candidates for resective epilepsy surgery. Epilepsy Behav 20:167–171PubMedCrossRefGoogle Scholar
  28. 28.
    Foldvary-Schaefer N, Unnwongse K (2011) Localizing and lateralizing features of auras and seizures. Epilepsy Behav 20:160–166PubMedCrossRefGoogle Scholar
  29. 29.
    Loddenkemper T, Kotagal P (2005) Lateralizing signs during seizures in focal epilepsy. Epilepsy Behav 7:1–17PubMedCrossRefGoogle Scholar
  30. 30.
    Miller JW, Cole AJ (2011) Is it necessary to define the ictal onset zone with EEG prior to performing resective epilepsy surgery? Epilepsy Behav 20:178–181PubMedCrossRefGoogle Scholar
  31. 31.
    Tellez-Zenteno JF, Hernandez Ronquillo L, Moien-Afshari F, Wiebe S (2010) Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res 89:310–318PubMedCrossRefGoogle Scholar
  32. 32.
    Duncan JS (2010) Imaging in the surgical treatment of epilepsy. Nat Rev Neurol 6:537–550PubMedCrossRefGoogle Scholar
  33. 33.
    Jackson GD, Badawy RA (2011) Selecting patients for epilepsy surgery: identifying a structural lesion. Epilepsy Behav 20:182–189PubMedCrossRefGoogle Scholar
  34. 34.
    Huppertz HJ, Grimm C, Fauser S et al (2005) Enhanced visualization of blurred gray-white matter junctions in focal cortical dysplasia by voxel-based 3D MRI analysis. Epilepsy Res 67:35–50PubMedCrossRefGoogle Scholar
  35. 35.
    Baxendale S, Thompson P (2010) Beyond localization: the role of traditional neuropsychological tests in an age of imaging. Epilepsia 51:2225–2230PubMedCrossRefGoogle Scholar
  36. 36.
    Helmstaedter C (2004) Neuropsychological aspects of epilepsy surgery. Epilepsy Behav 5:S45–S55PubMedCrossRefGoogle Scholar
  37. 37.
    Binder JR (2011) Functional MRI is a valid noninvasive alternative to Wada testing. Epilepsy Behav 20:214–222PubMedCrossRefGoogle Scholar
  38. 38.
    Sherman EM, Wiebe S, Fay-McClymont TB et al (2011) Neuropsychological outcomes after epilepsy surgery: systematic review and pooled estimates. Epilepsia 52:857–869PubMedCrossRefGoogle Scholar
  39. 39.
    Richardson MP, Strange BA, Thompson PJ et al (2004) Pre-operative verbal memory fMRI predicts post-operative memory decline after left temporal lobe resection. Brain 127:2419–2426PubMedCrossRefGoogle Scholar
  40. 40.
    Bonelli SB, Powell RH, Yogarajah M et al (2010) Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection. Brain 133:1186–1199PubMedCrossRefGoogle Scholar
  41. 41.
    Sabsevitz DS, Swanson SJ, Hammeke TA et al (2003) Use of preoperative functional neuroimaging to predict language deficits from epilepsy surgery. Neurology 60:1788–1792PubMedCrossRefGoogle Scholar
  42. 42.
    Bonelli SB, Thompson PJ, Yogarajah M et al (2012) Imaging language networks before and after anterior temporal lobe resection: results of a longitudinal fMRI study. Epilepsia 53:639–650PubMedCrossRefGoogle Scholar
  43. 43.
    Chassoux F, Rodrigo S, Semah F et al (2010) FDG-PET improves surgical outcome in negative MRI Taylor-type focal cortical dysplasias. Neurology 75:2168–2175PubMedCrossRefGoogle Scholar
  44. 44.
    Henry TR, Roman DD (2011) Presurgical epilepsy localization with interictal cerebral dysfunction. Epilepsy Behav 20:194–208PubMedCrossRefGoogle Scholar
  45. 45.
    Baumgartner C, Lehner-Baumgartner E (2008) The functional deficit zone – general principles. In: Lüders HO (Hrsg) Textbook of epilepsy surgery. Informa Healthcare, London, S 781–791Google Scholar
  46. 46.
    O’Brien TJ, So EL, Mullan BP et al (1998) Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology 50:445–454CrossRefGoogle Scholar
  47. 47.
    Baumgartner C, Pataraia E (2006) Revisiting the role of magnetoencephalography in epilepsy. Curr Opin Neurol 19:181–186PubMedCrossRefGoogle Scholar
  48. 48.
    Stefan H, Hummel C, Scheler G et al (2003) Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases. Brain 126:2396–2405PubMedCrossRefGoogle Scholar
  49. 49.
    Stefan H, Rampp S, Knowlton RC (2011) Magnetoencephalography adds to the surgical evaluation process. Epilepsy Behav 20:172–177PubMedCrossRefGoogle Scholar
  50. 50.
    Schneider F, Wang ZI, Alexopoulos AV et al (2013) Magnetic source imaging and ictal SPECT in MRI-negative neocortical epilepsies: additional value and comparison with intracranial EEG. Epilepsia 54:359–369PubMedCrossRefGoogle Scholar
  51. 51.
    Brodbeck V, Spinelli L, Lascano AM et al (2010) Electrical source imaging for presurgical focus localization in epilepsy patients with normal MRI. Epilepsia 51:583–591PubMedCrossRefGoogle Scholar
  52. 52.
    Wang G, Worrell G, Yang L et al (2011) Interictal spike analysis of high-density EEG in patients with partial epilepsy. Clin Neurophysiol 122:1098–1105PubMedCrossRefGoogle Scholar
  53. 53.
    Kaiboriboon K, Luders HO, Hamaneh M et al (2012) EEG source imaging in epilepsy – practicalities and pitfalls. Nat Rev Neurol 8:498–507PubMedCrossRefGoogle Scholar
  54. 54.
    Elshoff L, Groening K, Grouiller F et al (2012) The value of EEG-fMRI and EEG source analysis in the presurgical setup of children with refractory focal epilepsy. Epilepsia 53:1597–1606PubMedCrossRefGoogle Scholar
  55. 55.
    Jacobs J, Staba R, Asano E et al (2012) High-frequency oscillations (HFOs) in clinical epilepsy. Prog Neurobiol 98:302–315PubMedCrossRefGoogle Scholar
  56. 56.
    Zijlmans M, Jiruska P, Zelmann R et al (2012) High-frequency oscillations as a new biomarker in epilepsy. Ann Neurol 71:169–178PubMedCrossRefGoogle Scholar
  57. 57.
    Andrade-Valenca LP, Dubeau F, Mari F et al (2011) Interictal scalp fast oscillations as a marker of the seizure onset zone. Neurology 77:524–531PubMedCrossRefGoogle Scholar
  58. 58.
    Gotman J, Pittau F (2011) Combining EEG and fMRI in the study of epileptic discharges. Epilepsia 52(Suppl 4):38–42PubMedCrossRefGoogle Scholar
  59. 59.
    Zijlmans M, Huiskamp G, Hersevoort M et al (2007) EEG-fMRI in the preoperative work-up for epilepsy surgery. Brain 130:2343–2353PubMedCrossRefGoogle Scholar
  60. 60.
    Thornton R, Vulliemoz S, Rodionov R et al (2011) Epileptic networks in focal cortical dysplasia revealed using electroencephalography-functional magnetic resonance imaging. Ann Neurol 70:822–837PubMedCrossRefGoogle Scholar
  61. 61.
    Grouiller F, Thornton RC, Groening K et al (2011) With or without spikes: localization of focal epileptic activity by simultaneous electroencephalography and functional magnetic resonance imaging. Brain 134:2867–2886PubMedCrossRefGoogle Scholar
  62. 62.
    Chaudhary UJ, Carmichael DW, Rodionov R et al (2012) Mapping preictal and ictal haemodynamic networks using video-electroencephalography and functional imaging. Brain 135:3645–3663PubMedCrossRefGoogle Scholar
  63. 63.
    Morgan VL, Sonmezturk HH, Gore JC, Abou-Khalil B (2012) Lateralization of temporal lobe epilepsy using resting functional magnetic resonance imaging connectivity of hippocampal networks. Epilepsia 53:1628–1635PubMedCrossRefGoogle Scholar
  64. 64.
    Weaver KE, Chaovalitwongse WA, Novotny EJ et al (2013) Local functional connectivity as a pre-surgical tool for seizure focus identification in non-lesion, focal epilepsy. Front Neurol 4:43PubMedGoogle Scholar
  65. 65.
    Negishi M, Martuzzi R, Novotny EJ et al (2011) Functional MRI connectivity as a predictor of the surgical outcome of epilepsy. Epilepsia 52:1733–1740PubMedCrossRefGoogle Scholar
  66. 66.
    Winston GP, Daga P, Stretton J et al (2012) Optic radiation tractography and vision in anterior temporal lobe resection. Ann Neurol 71:334–341PubMedCrossRefGoogle Scholar
  67. 67.
    Kahane P, Minotti L, Hoffmann D et al (2004) Invasive EEG in the definition of the seizure onset zone: depth electrodes. In: Rosenow F, Luders H (Hrsg) Handbook of clinical neurophysiology, Bd 3. Elsevier, Amsterdam, S 109–133Google Scholar
  68. 68.
    Lesser RP, Crone NE, Webber WR (2011) Using subdural electrodes to assess the safety of resections. Epilepsy Behav 20:223–229PubMedCrossRefGoogle Scholar
  69. 69.
    Wellmer J, Groeben F von der, Klarmann U et al (2012) Risks and benefits of invasive epilepsy surgery workup with implanted subdural and depth electrodes. Epilepsia 53:1322–1332PubMedCrossRefGoogle Scholar
  70. 70.
    Olivier A (1983) Surgical management of complex partial seizures. In: Nistico G, DiPerri R, Meinardi H (Hrsg) Epilepsy: an update on research and therapy. Liss, New York, S 309–324Google Scholar
  71. 71.
    Spencer DD, Inserni J (1992) Temporal lobectomy. In: Lüders HO (Hrsg) Epilepsy surgery. Raven, New York, S 533–545Google Scholar
  72. 72.
    Wieser HG, Yasargil MG (1982) Selective amygdalohippocampectomy as a surgical treatment of mesiobasal limbic epilepsy. Surg Neurol 17:445–457PubMedCrossRefGoogle Scholar
  73. 73.
    Okonma SV, Blount JP, Gross RE (2011) Planning extent of resection in epilepsy: limited versus large resections. Epilepsy Behav 20:233–240PubMedCrossRefGoogle Scholar
  74. 74.
    Schramm J (2008) Temporal lobe epilepsy surgery and the quest for optimal extent of resection: a review. Epilepsia 49:1296–1307PubMedGoogle Scholar
  75. 75.
    Josephson CB, Dykeman J, Fiest KM et al (2013) Systematic review and meta-analysis of standard vs selective temporal lobe epilepsy surgery. Neurology 80:1669–1676PubMedCrossRefGoogle Scholar
  76. 76.
    Morrell F, Whistler WW, Bleck TP (1989) Multiple subpial transection: a new approach to the surgical treatment of focal epilepsy. J Neurosurg 70:231–239PubMedCrossRefGoogle Scholar
  77. 77.
    De Ribaupierre S, Delalande O (2008) Hemispherotomy and other disconnective techniques. Neurosurg Focus 25:E14Google Scholar
  78. 78.
    Schramm J, Clusmann H (2008) The surgery of epilepsy. Neurosurgery 62(Suppl 2):463–481PubMedCrossRefGoogle Scholar
  79. 79.
    Obeid M, Wyllie E, Rahi AC, Mikati MA (2009) Approach to pediatric epilepsy surgery: state of the art, part II: approach to specific epilepsy syndromes and etiologies. Eur J Paediatr Neurol 13:115–127PubMedCrossRefGoogle Scholar
  80. 80.
    Engel J Jr, Van Ness PC, Rasmussen TB, Ojemann LM (1993) Outcome with respect to epileptic seizures. In: Engel J Jr (Hrsg) Surgical treatment of the epilepsies, 2. Aufl. Raven, New York, S 609–622Google Scholar
  81. 81.
    Wieser HG, Blume WT, Fish D et al (2001) ILAE Commission Report. Proposal for a new classification of outcome with respect to epileptic seizures following epilepsy surgery. Epilepsia 42:282–286PubMedCrossRefGoogle Scholar
  82. 82.
    Salanova V, Andermann F, Rasmussen T et al (1996) The running down phenomen in temporal lobe epilepsy. Brain 119:989–996PubMedCrossRefGoogle Scholar
  83. 83.
    Tellez-Zenteno JF, Dhar R, Wiebe S (2005) Long-term seizure outcomes following epilepsy surgery: a systematic review and meta-analysis. Brain 128:1188–1198PubMedCrossRefGoogle Scholar
  84. 84.
    Wiebe S (2011) Epilepsy. Outcome patterns in epilepsy surgery – the long-term view. Nat Rev Neurol 8:123–124Google Scholar
  85. 85.
    Tisi J de, Bell GS, Peacock JL et al (2011) The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study. Lancet 378:1388–1395PubMedCrossRefGoogle Scholar
  86. 86.
    McIntosh AM, Averill CA, Kalnins RM et al (2012) Long-term seizure outcome and risk factors for recurrence after extratemporal epilepsy surgery. Epilepsia 53:970–978PubMedCrossRefGoogle Scholar
  87. 87.
    Bien CG, Szinay M, Wagner J et al (2009) Characteristics and surgical outcomes of patients with refractory magnetic resonance imaging-negative epilepsies. Arch Neurol 66:1491–1499PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2013

Authors and Affiliations

  1. 1.Karl Landsteiner Institut für Klinische Epilepsieforschung und Kognitive Neurologie, 2. Neurologische AbteilungKrankenhaus Hietzing mit Neurologischem Zentrum RosenhügelWienÖsterreich

Personalised recommendations