Zeitschrift für Epileptologie

, Volume 24, Issue 2, pp 100–107

Idiopathische generalisierte Epilepsien

Genetik und Pathophysiologie
Leitthema

Zusammenfassung

Idiopathische Epilepsien haben eine überwiegend genetische Ätiologie. Selten findet sich eine monogene Vererbung, bei der eine einzelne Genmutation für die Manifestation des Phänotyps verantwortlich ist. Meist liegt eine komplexe genetische Disposition vor, bei der das Zusammenspiel mehrerer genetischer Faktoren die Epilepsie verursacht. Die idiopathischen generalisierten Epilepsien (IGE) sind mit einer Heritabilität von 80% überwiegend komplex-genetisch bedingt. Klinisch sind die IGE-Subtypen durch primär generalisierte Anfallsformen, einen altersabhängigen Beginn, typische Veränderungen im EEG und eine meist normale psychomotorische Entwicklung gekennzeichnet. Die häufigsten Unterformen der IGE sind die kindlichen und juvenilen Absence-Epilepsien (CAE, JAE), die juvenile myoklonische Epilepsie (JME) und die Aufwach-Grand-Mal-Epilepsie (EGMA). Eng verwandt sind die früh beginnende Absence-Epilepsie (EOAE) und die generalisierte/genetische Epilepsie mit Fieberkrämpfen plus (GEFS+). In den letzten Jahren wurde eine zunehmende Zahl an Genen idenitifziert, die für Untereinheiten von spannungs- und ligandengesteuerten Ionenkanälen codieren und mit monogenen idiopathischen Epilepsien assoziiert sind, wie Mutationen in Natriumkanal- und GABA(A)-Rezeptor-Untereinheiten bei GEFS+. Selten wurden solche Mutationen auch bei den häufigsten IGE-Subtypen gefunden, v. a. in GABA(A)-Rezeptor-Untereinheiten, die zu einem partiellen Verlust der neuronalen Hemmung führen. Bei Absencen, insbesondere bei der EOAE wurden Mutationen des Glucosetransporters Typ 1 (GLUT1) identifiziert, die einen reduzierten Glucosetransport über die Blut-Hirn-Schranke bedingen. Kürzlich wurden auch bestimmte chromosomale Mikrodeletionen als prädisponierend bei bis zu 2,5% der häufigen IGE-Subtypen nachgewiesen. Aufgrund der Komplexität der Genetik bei IGE steht die Aufklärung der zugrunde liegenden Erbgutveränderungen noch in den Anfängen. Durch die neuen verfügbaren Sequenziertechniken besteht nun die Möglichkeit, exom- und genomweit die genetischen Veränderungen aufzudecken. Die Autoren hoffen, dass dies einen entscheidenden Beitrag zur Aufklärung der Pathophysiologie dieser wichtigen und häufigen Gruppe von Epilepsien leisten wird.

Schlüsselwörter

Anfälle Ionenkanal Glucosetransportprotein „DNA copy number variation“ Genetik 

Idiopathic generalized epilepsies

Genetics and pathophysiology

Abstract

Idiopathic epilepsies are genetically determined. The inheritance can be either monogenic, considering a single gene mutation as sufficient to cause the phenotype, or mainly complex, when the epileptic phenotype is determined by several genetic factors. The most important and most common subtypes of idiopathic generalized epilepsies (IGE) are childhood and juvenile absence epilepsies (CAE, JAE), juvenile myoclonic epilepsy (JME), and epilepsy with grand mal (generalized tonic-clonic) seizures on awakening (EGMA); closely related are early onset absence epilepsy (EOAE) and generalized/genetic epilepsy with febrile seizures plus (GEFS+). The IGE subtypes are characterized by primary generalized seizure types, an age-dependent onset, typical pathological EEG patterns, a benign course and normal psychomotor development. In recent years, an increasing number of mutations mainly associated with rare monogenic idiopathic epilepsy syndromes have been identified in genes encoding subunits of voltage- or ligand-gated ion channels, such as mutations in Na+ channel and GABA(A) receptor subunits in GEFS+. A few mutations have also been detected in the common forms of IGE, mainly in GABA(A) receptor subunits conferring a neuronal dysinhibition. For absence seizures, particularly EOAE, mutations in the glucose transporter type 1 (GLUT1) have been described, leading to a reduced transport rate of glucose across the blood-brain barrier. Recently, chromosomal microdeletions were found in up to 2.5% of IGE patients as a significant risk factor. Due to the complex genetic trait, the genetic enigma of IGE is just starting to be unraveled. The next generation sequencing techniques available now enable exome- and genome-wide sequence analyses, which the authors hope will contribute to understanding the pathophysiology of these common forms of epilepsy.

Keywords

Seizures Ion channel Glucose transport protein DNA Copy number variation Genetics 

Literatur

  1. 1.
    Boles RG, Seashore MF, Mitchell WG et al (1999) Glucose transporter type 1 deficiency: a study of two cases with video-EEG. Eur J Pediatr 158:978–983PubMedCrossRefGoogle Scholar
  2. 2.
    Chaix Y, Daquin G, Monteiro F et al (2003) Absence epilepsy with onset before age three years: a heterogeneous and often severe condition. Epilepsia 44:944–949PubMedCrossRefGoogle Scholar
  3. 3.
    Chen Y, Lu J, Pan H et al (2003) Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 54:239–243PubMedCrossRefGoogle Scholar
  4. 4.
    Chioza B, Wilkie H, Nashef L et al (2001) Association between the alpha-1A calcium channel gene CACNA1A and idiopathic generalized epilepsy. Neurology 56:1245–1246PubMedGoogle Scholar
  5. 5.
    Cossette P, Liu L, Brisebois K, Dong H et al (2002) Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet 31:184–189PubMedCrossRefGoogle Scholar
  6. 6.
    D’Agostino D, Bertelli M, Gallo S et al (2004) Mutations and polymorphisms of the CLCN2 gene in idiopathic epilepsy. Neurology 63:1500–1502Google Scholar
  7. 7.
    Kovel CG de, Trucks H, Helbig I et al (2010) Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain 133:23–32PubMedCrossRefGoogle Scholar
  8. 8.
    Dibbens LM, Feng HJ, Richards MC et al (2004) GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum Mol Genet 13:1315–1319PubMedCrossRefGoogle Scholar
  9. 9.
    Doose H (1998) Epilepsien im Kindes- und Jugendalter. Norddeutsches Epilepsie-Zentrum, RaisdorfGoogle Scholar
  10. 10.
    Elger CE, Beyenburg S, Dennig D et al (2008) Erster Epileptischer Anfall und Epilepsien im Erwachsenenalter. In: Diener HC et al (Hrsg) Kommission „Leitlinien der Deutschen Gesellschaft für Neurologie“. Thieme, StuttgartGoogle Scholar
  11. 11.
    Escayg A, De Waard M, Lee DD et al (2000) Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet 66:1531–1539PubMedCrossRefGoogle Scholar
  12. 12.
    Everett K, Chioza B, Aicardi J et al (2007) Linkage and mutational analysis of CLCN2 in childhood absence epilepsy. Epilepsy Res 75:145–153PubMedCrossRefGoogle Scholar
  13. 13.
    Freitag CM, May TW, Pfafflin M et al (2001) Incidence of epilepsies and epileptic syndromes in children and adolescents: a population-based prospective study in Germany. Epilepsia 42:979–985PubMedCrossRefGoogle Scholar
  14. 14.
    Glauser TA, Cnaan A, Shinnar S et al (2010) Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy. N Engl J Med 362:790–799PubMedCrossRefGoogle Scholar
  15. 15.
    Guerrini R, Dravet C, Genton P et al (1998) Lamotrigine and seizure aggravation in severe myoclonic epilepsy. Epilepsia 39:508–512PubMedCrossRefGoogle Scholar
  16. 16.
    Guerrini R, Sanchez-Carpintero R, Deonna T et al (2002) Early-onset absence epilepsy and paroxysmal dyskinesia. Epilepsia 43:1224–1229PubMedCrossRefGoogle Scholar
  17. 17.
    Helbig I, Mefford HC, Sharp AJ et al (2009) 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet 41:160–162PubMedCrossRefGoogle Scholar
  18. 18.
    Heron SE, Khosravani H, Varela D et al (2007) Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H functional variants. Ann Neurol 62:560–568PubMedCrossRefGoogle Scholar
  19. 19.
    Imbrici P, Jaffe SL, Eunson LH et al (2004) Dysfunction of the brain calcium channel CaV2.1 in absence epilepsy and episodic ataxia. Brain 127:2682–2692PubMedCrossRefGoogle Scholar
  20. 20.
    Jouvenceau A, Eunson LH, Spauschus A et al (2001) Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet 358:801–807PubMedCrossRefGoogle Scholar
  21. 21.
    Khosravani H, Altier C, Simms B et al (2004) Gating effects of mutations in the Cav3.2 T-type calcium channel associated with childhood absence epilepsy. J Biol Chem 279:9681–9684PubMedCrossRefGoogle Scholar
  22. 22.
    Kleefuss-Lie A, Friedl W, Cichon S et al (2009) CLCN2 variants in idiopathic generalized epilepsy. Nat Genet 41:954–955PubMedCrossRefGoogle Scholar
  23. 23.
    Lerche H, Scheffer IE, Berkovic SF (2009) Generalized (genetic) epilepsy with febrile seizures plus, severe myoclonic epilepsy of infancy (Dravet syndrome), intractable childhood epilepsy with generalized tonic clonic seizures and related syndromes. In: Lehmann-Horn F, Lerche H (Hrsg) Encyclopedia of molecular mechanisms of disease. Springer, Berlin Heidelberg New York TokioGoogle Scholar
  24. 24.
    Lerche H, Weber YG, Jurkat-Rott K, Lehmann-Horn F (2005) Ion channel defects in idiopathic epilepsies. Curr Pharm Des 11:2737–2752PubMedCrossRefGoogle Scholar
  25. 25.
    Maljevic S, Krampfl K, Cobilanschi J et al (2006) A mutation in the GABA(A) receptor alpha(1)-subunit is associated with absence epilepsy. Ann Neurol 59:983–987PubMedCrossRefGoogle Scholar
  26. 26.
    Marson AG, Appleton R, Baker GA et al (2007) A randomised controlled trial examining the longer-term outcomes of standard versus new antiepileptic drugs. The SANAD trial. Health Technol Assess 11:1–134Google Scholar
  27. 27.
    Mefford HC, Muhle H, Ostertag P et al (2010) Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet 6:e1000962PubMedCrossRefGoogle Scholar
  28. 28.
    Mullen SA, Suls A, De Jonghe P et al (2010) Absence epilepsies with widely variable onset are a key feature of familial GLUT1 deficiency. Neurology 75:432–340PubMedCrossRefGoogle Scholar
  29. 29.
    Neal EG, Chaffe H, Schwartz RH et al (2009) A randomized trial of classical and medium-chain triglyceride ketogenic diets in the treatment of childhood epilepsy. Epilepsia 1109–1117Google Scholar
  30. 30.
    Niemeyer MI, Cid LP, Sepúlveda FV et al (2010) No evidence for a role of CLCN2 variants in idiopathic generalized epilepsy. Nat Genet 42:3PubMedCrossRefGoogle Scholar
  31. 31.
    Powell KL, Cain SM, Ng C et al (2009) Cav3.2 T-type calcium channel point mutation has splice-variant-specific effects on function and segregates with seizure expression in a polygenic rat model of absence epilepsy. J Neurosci 29:371–380PubMedCrossRefGoogle Scholar
  32. 32.
    Rosenfeld WE, Benbadis S, Edrich P et al (2009) Levetiracetam as add-on therapy for idiopathic generalized epilepsy syndromes with onset during adolescence: analysis of two randomized, double-blind, placebo-controlled studies. Epilepsy Res 85:72–80PubMedCrossRefGoogle Scholar
  33. 33.
    Roulet-Perez E, Ballhausen D, Bonafé L et al (2008) Glut-1 deficiency syndrome masquerading as idiopathic generalized epilepsy. Epilepsia 49:1955–1958PubMedCrossRefGoogle Scholar
  34. 34.
    Saint-Martin C, Gauvain G, Teodorescu G et al (2009) Two novel CLCN2 mutations accelerating chloride channel deactivation are associated with idiopathic generalized epilepsy. Hum Mutat 30:397–405PubMedCrossRefGoogle Scholar
  35. 35.
    Scheffer IE, Berkovic SF (1997) Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes. Brain 120:479–490PubMedCrossRefGoogle Scholar
  36. 36.
    Striano P, Weber YG, Toliat MR et al (o J) GLUT1-mutations are a rare cause of idiopathic generalized epilepsy, submittedGoogle Scholar
  37. 37.
    Suls A, Dedeken P, Goffin K et al (2008) Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain 131:1831–1844PubMedCrossRefGoogle Scholar
  38. 38.
    Suls A, Mullen SA, Weber YG et al (2009) Early-onset absence epilepsy caused by mutations in the glucose transporter GLUT1. Ann Neurol 66:415–419PubMedCrossRefGoogle Scholar
  39. 39.
    Suzuki T, Delgado-Escueta AV, Aguan K et al (2004) Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nat Genet 36:842–849PubMedCrossRefGoogle Scholar
  40. 40.
    Suzuki T, Miyamoto H, Nakahari T et al (2009) Efhc1 deficiency causes spontaneous myoclonus and increased seizure susceptibility. Hum Mol Genet 18:1099–1109PubMedCrossRefGoogle Scholar
  41. 41.
    Vitko I, Chen Y, Arias JM et al (2005) Functional characterization and neuronal modeling of the effects of childhood absence epilepsy variants of CACNA1H, a T-type calcium channel. J Neurosci 25:4844–4855PubMedCrossRefGoogle Scholar
  42. 42.
    Wallace RH, Marini C, Petrou S et al (2001) Mutant GABA(A) receptor gamma-2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet 28:49–52PubMedGoogle Scholar
  43. 43.
    Weber YG, Lerche H (2008) Genetic mechanisms in idiopathic epilepsies. Dev Med Child Neurol 50:648–654PubMedCrossRefGoogle Scholar
  44. 44.
    Weber YG, Storch A, Wuttke TV et al (2008) GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest 118:2157–2168PubMedGoogle Scholar
  45. 45.
    Wimmer VC, Reid CA, Mitchell S et al (2010) Axon initial segment dysfunction in a mouse model of genetic epilepsy with febrile seizures plus. J Clin Invest 120:2661–2671PubMedCrossRefGoogle Scholar
  46. 46.
    Yagi K (2004) Overview of Japanese experience-controlled and uncontrolled trials. Seizure 13:11–15CrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Abt. Neurologie mit Schwerpunkt EpileptologieZentrum für Neurologie, Hertie Institut für Klinische Hirnforschung,Universität TübingenTübingenDeutschland
  2. 2.Cologne Center for GenomicsUniversität zu KölnKölnDeutschland

Personalised recommendations