Advertisement

Infektiologische und immunologische Aspekte bei Kinderwunsch

  • Ruben-J. Kuon
  • Volker Daniel
  • Kilian Vomstein
  • Maja Weber
  • Timo Gaiser
  • Bettina Toth
CME
  • 31 Downloads

Zusammenfassung

Trotz modernster Verfahren der Reproduktionsmedizin inklusive der Präimplantationsdiagnostik gelingt in manchen Fällen auch bei wiederholtem Transfer eines morphologisch und genetisch unauffälligen Embryos keine Einnistung. Man spricht von rezidivierendem Implantationsversagen (RIF). Darüber hinaus sind etwa 1–3 % aller Paare von wiederkehrenden Spontanaborten (WSA) betroffen. Lediglich bei etwa der Hälfte dieser Paare lässt sich ein ursächlicher Faktor ermitteln. In den letzten Jahren sind infektiologische und immunologische Aspekte in den Fokus der Ursachensuche gerückt. Neben autoimmunologischen Faktoren wie dem Antiphospholipidsyndrom wird insbesondere die Rolle der peripheren und uterinen natürlichen Killerzellen bei der Implantation und dem Abortgeschehen beleuchtet. Neueste Daten weisen zudem auf eine Bedeutung der chronischen Endometritis als Risikofaktor sowohl für RIF als auch für WSA hin. Inwieweit sich die Pathogenese bei RIF und WSA überschneidet, ist unklar.

Schlüsselwörter

Rezidivierendes Implantationsversagen Wiederkehrende Spontanaborte Natürliche Killerzellen Chronische Endometritis Plasmazellen 

Infectiological and immunological aspects in human reproduction

Abstract

Despite advanced techniques in reproductive medicine, including preimplantation genetic diagnosis, in some cases implantation fails even after repeated transfer of a morphologically and genetically normal embryo. This frustrating complication is called recurrent implantation failure (RIF). In addition, approximately 1–3% of couples are affected by recurrent spontaneous miscarriage (RSM). A causative factor is diagnosed in only approximately half of these cases. Recently, infectiological and immunological aspects have come into focus of diagnostics in couples affected by RIF or RSM. In addition to autoimmune factors, such as the antiphospholipid syndrome, the role of peripheral and uterine natural killer cells in implantation and miscarriage is highlighted. The latest data also indicate chronic endometritis as a risk factor for both RIF and RSM. Whether there is an overlap in the pathogenesis of RIF and RSM is currently being investigated

Keywords

Recurrent implantation failure Abortion, habitual Natural killer cells Endometritis, chronic Plasma cells 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

R.-J. Kuon, T. Gaiser und B. Toth sind Gesellschafter der Reprognostics GbR. M. Weber ist Mitarbeiter der Reprognostics GbR. V. Daniel und K. Vomstein geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Bundesministerium für Familie SFUJ (2014) Kinderlose Frauen und Männer, S 1–190Google Scholar
  2. 2.
    Daniel V (2016) Transplantationsimmunologische Aspekte. In: Fehlgeburten Totgeburten Frühgeburten. Springer, Berlin, Heidelberg, S 45–52Google Scholar
  3. 3.
    Mor G, Aldo P, Alvero AB (2017) The unique immunological and microbial aspects of pregnancy. Nat Rev Immunol 17:469–482.  https://doi.org/10.1038/nri.2017.64 PubMedCrossRefGoogle Scholar
  4. 4.
    Fernandez N, Cooper J, Sprinks M et al (1999) A critical review of the role of the major histocompatibility complex in fertilization, preimplantation development and feto-maternal interactions. Hum Reprod Update 5:234–248PubMedCrossRefGoogle Scholar
  5. 5.
    Jenkins C, Roberts J, Wilson R et al (2000) Evidence of a T(H) 1 type response associated with recurrent miscarriage. Fertil Steril 73:1206–1208PubMedCrossRefGoogle Scholar
  6. 6.
    Piccinni MP, Beloni L, Livi C et al (1998) Defective production of both leukemia inhibitory factor and type 2 T-helper cytokines by decidual T cells in unexplained recurrent abortions. Nat Med 4:1020–1024.  https://doi.org/10.1038/2006 PubMedCrossRefGoogle Scholar
  7. 7.
    Scherjon S, Lashley L, van der Hoorn M‑L, Claas F (2011) Fetus specific T cell modulation during fertilization, implantation and pregnancy. Placenta 32(Suppl 4):S291–S297.  https://doi.org/10.1016/j.placenta.2011.03.014 PubMedCrossRefGoogle Scholar
  8. 8.
    Bouteiller P, Rodriguez A‑M, Mallet V et al (2011) Placental expression of HLA class I genes. Am J Reprod Immunol 35:216–225.  https://doi.org/10.1111/j.1600-0897.1996.tb00034.x CrossRefGoogle Scholar
  9. 9.
    Dahl M, Hviid TVF (2012) Human leucocyte antigen class Ib molecules in pregnancy success and early pregnancy loss. Hum Reprod Update 18:92–109.  https://doi.org/10.1093/humupd/dmr043 PubMedCrossRefGoogle Scholar
  10. 10.
    Hammer A, Hutter H, Blaschitz A et al (2011) Amnion epithelial cells, in contrast to trophoblast cells, express all classical HLA class I molecules together with HLA-G. Am J Reprod Immunol 37:161–171.  https://doi.org/10.1111/j.1600-0897.1997.tb00208.x CrossRefGoogle Scholar
  11. 11.
    Middleton D, Curran M, Maxwell L (2002) Natural killer cells and their receptors. Transpl Immunol 10:147–164.  https://doi.org/10.1016/S0966-3274(02)00062-X PubMedCrossRefGoogle Scholar
  12. 12.
    Thielens A, Vivier E, Romagné F (2012) NK cell MHC class I specific receptors (KIR): from biology to clinical intervention. Curr Opin Immunol 24:239–245.  https://doi.org/10.1016/j.coi.2012.01.001 PubMedCrossRefGoogle Scholar
  13. 13.
    Hiby SE, Apps R, Sharkey AM et al (2010) Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J Clin Invest 120:4102–4110.  https://doi.org/10.1172/JCI43998 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Hiby SE, Regan L, Lo W et al (2008) Association of maternal killer-cell immunoglobulin-like receptors and parental HLA-C genotypes with recurrent miscarriage. Hum Reprod 23:972–976PubMedCrossRefGoogle Scholar
  15. 15.
    Hiby SE, Walker JJ, O’shaughnessy KM et al (2004) Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med 200:957–965PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Gnainsky Y, Granot I, Aldo P et al (2015) Biopsy-induced inflammatory conditions improve endometrial receptivity: the mechanism of action. Reproduction 149:75–85.  https://doi.org/10.1530/REP-14-0395 PubMedCrossRefGoogle Scholar
  17. 17.
    Zenclussen AC, Hämmerling GJ (2015) Cellular regulation of the uterine microenvironment that enables embryo implantation. Front Immunol 6:321.  https://doi.org/10.3389/fimmu.2015.00321 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    van Kampen CA, Versteeg-van der Voort Maarschalk MFJ, Roelen DL, Claas FHJ (2002) Primed CTLs specific for HLA class I may still be present in sensitized patients when anti-HLA antibodies have disappeared: relevance for donor selection. Transplantation 73:1286–1290PubMedCrossRefGoogle Scholar
  19. 19.
    van Kampen CA, Versteeg-van der Voort Maarschalk MFJ, Langerak-Langerak J et al (2002) Kinetics of the pregnancy-induced humoral and cellular immune response against the paternal HLA class I antigens of the child. Hum Immunol 63:452–458PubMedCrossRefGoogle Scholar
  20. 20.
    Dankers MKA, Roelen DL, Korfage N et al (2003) Differential immunogenicity of paternal HLA class I antigens in pregnant women. Hum Immunol 64:600–606PubMedCrossRefGoogle Scholar
  21. 21.
    Dankers MKA, Witvliet MD, Roelen DL et al (2004) The number of amino acid triplet differences between patient and donor is predictive for the antibody reactivity against mismatched human leukocyte antigens. Transplantation 77:1236–1239PubMedCrossRefGoogle Scholar
  22. 22.
    Duquesnoy RJ (2012) The antibody response to an HLA mismatch: a model for nonself-self discrimination in relation to HLA epitope immunogenicity. Int J Immunogenet 39:1–9.  https://doi.org/10.1111/j.1744-313X.2011.01042.x PubMedCrossRefGoogle Scholar
  23. 23.
    Regan L, Braude PR, Hill DP (1991) A prospective study of the incidence, time of appearance and significance of anti-paternal lymphocytotoxic antibodies in human pregnancy. Hum Reprod 6:294–298PubMedCrossRefGoogle Scholar
  24. 24.
    Triulzi DJ, Kleinman S, Kakaiya RM et al (2009) The effect of previous pregnancy and transfusion on HLA alloimmunization in blood donors: implications for a transfusion-related acute lung injury risk reduction strategy. Transfusion 49:1825–1835.  https://doi.org/10.1111/j.1537-2995.2009.02206.x PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Bouma GJ, van Caubergh P, van Bree SP et al (1996) Pregnancy can induce priming of cytotoxic T lymphocytes specific for paternal HLA antigens that is associated with antibody formation. Transplantation 62:672–678PubMedCrossRefGoogle Scholar
  26. 26.
    Lissauer DM, Piper KP, Moss PAH, Kilby MD (2009) Fetal microchimerism: the cellular and immunological legacy of pregnancy. Expert Rev Mol Med 11:e33.  https://doi.org/10.1017/S1462399409001264 PubMedCrossRefGoogle Scholar
  27. 27.
    Tilburgs T, Roelen DL, van der Mast BJ et al (2006) Differential distribution of CD4(+)CD25(bright) and CD8(+)CD28(−) T‑cells in decidua and maternal blood during human pregnancy. Placenta 27(Suppl A):S47–S53.  https://doi.org/10.1016/j.placenta.2005.11.008 PubMedCrossRefGoogle Scholar
  28. 28.
    Verduin EP, Schonewille H, Brand A et al (2012) High anti-HLA response in women exposed to intrauterine transfusions for severe alloimmune hemolytic disease is associated with mother-child HLA triplet mismatches, high anti-D titer, and new red blood cell antibody formation. Transfusion 53:939–947.  https://doi.org/10.1111/j.1537-2995.2012.03862.x PubMedCrossRefGoogle Scholar
  29. 29.
    Bianchi DW, Zickwolf GK, Weil GJ et al (1996) Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci USA 93:705–708PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ariga H, Ohto H, Busch MP et al (2001) Kinetics of fetal cellular and cell-free DNA in the maternal circulation during and after pregnancy: implications for noninvasive prenatal diagnosis. Transfusion 41:1524–1530PubMedCrossRefGoogle Scholar
  31. 31.
    Lashley LEELO, van der Keur C, van Beelen E et al (2015) Stronger T‑cell alloreactivity and diminished suppressive capacity of peripheral regulatory T cells in infertile women undergoing in vitro fertilization. Am J Reprod Immunol 74:268–278.  https://doi.org/10.1111/aji.12398 PubMedCrossRefGoogle Scholar
  32. 32.
    Wilczyński JR (2006) Immunological analogy between allograft rejection, recurrent abortion and pre-eclampsia—the same basic mechanism? Hum Immunol 67:492–511.  https://doi.org/10.1016/j.humimm.2006.04.007 PubMedCrossRefGoogle Scholar
  33. 33.
    Jin L‑P, Chen Q‑Y, Zhang T et al (2009) The CD4+CD25 bright regulatory T cells and CTLA-4 expression in peripheral and decidual lymphocytes are down-regulated in human miscarriage. Clin Immunol 133:402–410PubMedCrossRefGoogle Scholar
  34. 34.
    Mei S, Tan J, Chen H et al (2010) Changes of CD4+CD25high regulatory T cells and FOXP3 expression in unexplained recurrent spontaneous abortion patients. Fertil Steril 94:2244–2247.  https://doi.org/10.1016/j.fertnstert.2009.11.020 PubMedCrossRefGoogle Scholar
  35. 35.
    Sasaki Y, Sakai M, Miyazaki S et al (2004) Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod 10:347–353.  https://doi.org/10.1093/molehr/gah044 PubMedCrossRefGoogle Scholar
  36. 36.
    Yang H, Qiu L, Chen G et al (2008) Proportional change of CD4+CD25+ regulatory T cells in decidua and peripheral blood in unexplained recurrent spontaneous abortion patients. Fertil Steril 89:656–661.  https://doi.org/10.1016/j.fertnstert.2007.03.037 PubMedCrossRefGoogle Scholar
  37. 37.
    Zhou J, Wang Z, Zhao X et al (2012) An increase of Treg cells in the peripheral blood is associated with a better in vitro fertilization treatment outcome. Am J Reprod Immunol 68:100–106.  https://doi.org/10.1111/j.1600-0897.2012.01153.x PubMedCrossRefGoogle Scholar
  38. 38.
    Abumaree MH, Chamley LW, Badri M, El-Muzaini MF (2012) Trophoblast debris modulates the expression of immune proteins in macrophages: a key to maternal tolerance of the fetal allograft? J Reprod Immunol 94:131–141.  https://doi.org/10.1016/j.jri.2012.03.488 PubMedCrossRefGoogle Scholar
  39. 39.
    La Rocca C, Carbone F, Longobardi S, Matarese G (2014) The immunology of pregnancy: regulatory T cells control maternal immune tolerance toward the fetus. Immunol Lett 162:41–48.  https://doi.org/10.1016/j.imlet.2014.06.013 PubMedCrossRefGoogle Scholar
  40. 40.
    Teles A, Zenclussen AC, Schumacher A (2013) Regulatory T cells are baby’s best friends. Am J Reprod Immunol 69:331–339.  https://doi.org/10.1111/aji.12067 PubMedCrossRefGoogle Scholar
  41. 41.
    Khanjani S, Kandola MK, Lindstrom TM et al (2011) NF-κB regulates a cassette of immune/inflammatory genes in human pregnant myometrium at term. J Cell Mol Med 15:809–824.  https://doi.org/10.1111/j.1582-4934.2010.01069.x PubMedCrossRefGoogle Scholar
  42. 42.
    Miyakis S, Lockshin MD, Atsumi T et al (2006) International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 4:295–306PubMedCrossRefGoogle Scholar
  43. 43.
    Empson M, Lassere M, Craig J, Scott J (2005) Prevention of recurrent miscarriage for women with antiphospholipid antibody or lupus anticoagulant. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd002859.pub2 PubMedCrossRefGoogle Scholar
  44. 44.
    Empson M, Lassere M, Craig JC, Scott JR (2002) Recurrent pregnancy loss with antiphospholipid antibody: a systematic review of therapeutic trials. Obstet Gynecol 99:135–144PubMedGoogle Scholar
  45. 45.
    Mak A, Cheung MW-L, Cheak AA-C, Ho RC-M (2010) Combination of heparin and aspirin is superior to aspirin alone in enhancing live births in patients with recurrent pregnancy loss and positive anti-phospholipid antibodies: a meta-analysis of randomized controlled trials and meta-regression. Rheumatology (Oxf) 49:281–288.  https://doi.org/10.1093/rheumatology/kep373 CrossRefGoogle Scholar
  46. 46.
    Ziakas PD, Pavlou M, Voulgarelis M (2010) Heparin treatment in antiphospholipid syndrome with recurrent pregnancy loss: a systematic review and meta-analysis. Obstet Gynecol 115:1256–1262.  https://doi.org/10.1097/AOG.0b013e3181deba40 PubMedCrossRefGoogle Scholar
  47. 47.
    American College of Obstetricians and Gynecologists Committee on Practice Bulletins-Obstetrics (2011) Practice bulletin no. 118: antiphospholipid syndrome. Obstet Gynecol 117:192–199.  https://doi.org/10.1097/AOG.0b013e31820a61f9 CrossRefGoogle Scholar
  48. 48.
    Derksen RH, de Groot PG (2004) Clinical consequences of antiphospholipid antibodies. Neth J Med 62:273–278PubMedGoogle Scholar
  49. 49.
    Alijotas Reig J, Ferrer-Oliveras R, Ruffatti A et al (2015) The European Registry on Obstetric Antiphospholipid Syndrome (EUROAPS): a survey of 247 consecutive cases. Autoimmun Rev 14:387–395.  https://doi.org/10.1016/j.autrev.2014.12.010 PubMedCrossRefGoogle Scholar
  50. 50.
    Arachchillage DRJ, Machin SJ, Mackie IJ, Cohen H (2015) Diagnosis and management of non-criteria obstetric antiphospholipid syndrome. Thromb Haemost 113:13–19.  https://doi.org/10.1160/TH14-05-0416 PubMedCrossRefGoogle Scholar
  51. 51.
    Cohn DM, Goddijn M, Middeldorp S et al (2010) Recurrent miscarriage and antiphospholipid antibodies: prognosis of subsequent pregnancy. J Thromb Haemost 8:2208–2213PubMedCrossRefGoogle Scholar
  52. 52.
    Mekinian A, Loire-Berson P, Nicaise-Roland P et al (2012) Outcomes and treatment of obstetrical antiphospholipid syndrome in women with low antiphospholipid antibody levels. J Reprod Immunol 94:222–226.  https://doi.org/10.1016/j.jri.2012.02.004 PubMedCrossRefGoogle Scholar
  53. 53.
    Robertson MJ, Ritz J (1990) Biology and clinical relevance of human natural killer cells. Blood 76:2421–2438PubMedGoogle Scholar
  54. 54.
    Laird SM, Mariee N, Wei L, Li TC (2011) Measurements of CD56+ cells in peripheral blood and endometrium by flow cytometry and immunohistochemical staining in situ. Hum Reprod 26:1331–1337PubMedCrossRefGoogle Scholar
  55. 55.
    Poli A, Michel T, Thérésine M et al (2009) CD56bright natural killer (NK) cells: an important NK cell subset. Immunology 126:458–465.  https://doi.org/10.1111/j.1365-2567.2008.03027.x PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    King K, Smith S, Chapman M, Sacks G (2010) Detailed analysis of peripheral blood natural killer (NK) cells in women with recurrent miscarriage. Hum Reprod 25:52–58PubMedCrossRefGoogle Scholar
  57. 57.
    Koo HS, Kwak-Kim J, Yi HJ et al (2015) Resistance of uterine radial artery blood flow was correlated with peripheral blood NK cell fraction and improved with low molecular weight heparin therapy in women with unexplained recurrent pregnancy loss. Am J Reprod Immunol 73:175–184PubMedCrossRefGoogle Scholar
  58. 58.
    Lyall F, Robson SC, Bulmer JN (2013) Spiral artery remodeling and trophoblast invasion in preeclampsia and fetal growth restriction: relationship to clinical outcome. Hypertension 62:1046–1054PubMedCrossRefGoogle Scholar
  59. 59.
    Plaisier M, Dennert I, Rost E et al (2009) Decidual vascularization and the expression of angiogenic growth factors and proteases in first trimester spontaneous abortions. Hum Reprod 24:185–197.  https://doi.org/10.1093/humrep/den296 PubMedCrossRefGoogle Scholar
  60. 60.
    Quenby S, Nik H, Innes B et al (2009) Uterine natural killer cells and angiogenesis in recurrent reproductive failure. Hum Reprod 24:45–54.  https://doi.org/10.1093/humrep/den348 PubMedCrossRefGoogle Scholar
  61. 61.
    Lash GE, Bulmer JN, Li TC et al (2016) Standardisation of uterine natural killer (uNK) cell measurements in the endometrium of women with recurrent reproductive failure. J Reprod Immunol 116:50–59.  https://doi.org/10.1016/j.jri.2016.04.290 PubMedCrossRefGoogle Scholar
  62. 62.
    Beer AE, Kwak JY, Ruiz JE (1996) Immunophenotypic profiles of peripheral blood lymphocytes in women with recurrent pregnancy losses and in infertile women with multiple failed in vitro fertilization cycles. Am J Reprod Immunol 35:376–382PubMedCrossRefGoogle Scholar
  63. 63.
    Emmer PM, Nelen WL, Steegers EA et al (2000) Peripheral natural killer cytotoxicity and CD56(pos)CD16(pos) cells increase during early pregnancy in women with a history of recurrent spontaneous abortion. Hum Reprod 15:1163–1169PubMedCrossRefGoogle Scholar
  64. 64.
    Kwak JY, Beaman KD, Gilman-Sachs A et al (1995) Up-regulated expression of CD56+, CD56+/CD16+, and CD19+ cells in peripheral blood lymphocytes in pregnant women with recurrent pregnancy losses. Am J Reprod Immunol 34:93–99PubMedCrossRefGoogle Scholar
  65. 65.
    Ntrivalas EI, Bowser CR, Kwak-Kim J et al (2005) Expression of killer immunoglobulin-like receptors on peripheral blood NK cell subsets of women with recurrent spontaneous abortions or implantation failures. Am J Reprod Immunol 53:215–221PubMedCrossRefGoogle Scholar
  66. 66.
    Seshadri S, Sunkara SK (2014) Natural killer cells in female infertility and recurrent miscarriage: a systematic review and meta-analysis. Hum Reprod Update 20:429–438PubMedCrossRefGoogle Scholar
  67. 67.
    Shakhar K, Ben-Eliyahu S, Loewenthal R et al (2003) Differences in number and activity of peripheral natural killer cells in primary versus secondary recurrent miscarriage. Fertil Steril 80:368–375PubMedCrossRefGoogle Scholar
  68. 68.
    Bulmer JN, Williams PJ, Lash GE (2010) Immune cells in the placental bed. Int J Dev Biol 54:281–294.  https://doi.org/10.1387/ijdb.082763jb PubMedCrossRefGoogle Scholar
  69. 69.
    Russell P, Sacks G, Tremellen K, Gee A (2013) The distribution of immune cells and macrophages in the endometrium of women with recurrent reproductive failure. III: further observations and reference ranges. Pathology 45:393–401PubMedCrossRefGoogle Scholar
  70. 70.
    Lash GE, Bulmer JN (2011) Do uterine natural killer (uNK) cells contribute to female reproductive disorders? J Reprod Immunol 88:156–164PubMedCrossRefGoogle Scholar
  71. 71.
    Chen X, Mariee N, Jiang L et al (2017) Measurement of uterine natural killer cell percentage in the periimplantation endometrium from fertile women and women with recurrent reproductive failure: establishment of a reference range. Am J Obstet Gynecol 217:680.e1–680.e6.  https://doi.org/10.1016/j.ajog.2017.09.010 CrossRefGoogle Scholar
  72. 72.
    Kuon RJ, Weber M, Heger J et al (2017) Uterine natural killer cells in patients with idiopathic recurrent miscarriage. Am J Reprod Immunol.  https://doi.org/10.1111/aji.12721 PubMedCrossRefGoogle Scholar
  73. 73.
    Robson A, Harris LK, Innes BA et al (2012) Uterine natural killer cells initiate spiral artery remodeling in human pregnancy. FASEB J 26:4876–4885PubMedCrossRefGoogle Scholar
  74. 74.
    Katano K, Suzuki S, Ozaki Y et al (2013) Peripheral natural killer cell activity as a predictor of recurrent pregnancy loss: a large cohort study. Fertil Steril 100:1629–1634.  https://doi.org/10.1016/j.fertnstert.2013.07.1996 PubMedCrossRefGoogle Scholar
  75. 75.
    Quenby S, Kalumbi C, Bates M et al (2005) Prednisolone reduces preconceptual endometrial natural killer cells in women with recurrent miscarriage. Fertil Steril 84:980–984PubMedCrossRefGoogle Scholar
  76. 76.
    Roussev RG, Ng SC, Coulam CB (2007) Natural killer cell functional activity suppression by intravenous immunoglobulin, intralipid and soluble human leukocyte antigen-G. Am J Reprod Immunol 57:262–269.  https://doi.org/10.1111/j.1600-0897.2007.00473.x PubMedCrossRefGoogle Scholar
  77. 77.
    Granato D, Blum S, Rössle C et al (2000) Effects of parenteral lipid emulsions with different fatty acid composition on immune cell functions in vitro. JPEN J Parenter Enteral Nutr 24:113–118PubMedCrossRefGoogle Scholar
  78. 78.
    Kuon RJ, Müller F, Vomstein K et al (2017) Pre-pregnancy levels of peripheral natural killer cells as markers for immunomodulatory treatment in patients with recurrent miscarriage. Arch Immunol Ther Exp (Warsz).  https://doi.org/10.1007/s00005-017-0457-7 CrossRefGoogle Scholar
  79. 79.
    Roussev RG, Acacio B, Ng SC, Coulam CB (2008) Duration of intralipid’s suppressive effect on NK cell’s functional activity. Am J Reprod Immunol 60:258–263PubMedCrossRefGoogle Scholar
  80. 80.
    Dakhly DMR, Bayoumi YA, Sharkawy M et al (2016) Intralipid supplementation in women with recurrent spontaneous abortion and elevated levels of natural killer cells. Int J Gynaecol Obstet 135:324–327.  https://doi.org/10.1016/j.ijgo.2016.06.026 PubMedCrossRefGoogle Scholar
  81. 81.
    Bouet P‑E, El Hachem H, Monceau E et al (2016) Chronic endometritis in women with recurrent pregnancy loss and recurrent implantation failure: prevalence and role of office hysteroscopy and immunohistochemistry in diagnosis. Fertil Steril 105:106–110.  https://doi.org/10.1016/j.fertnstert.2015.09.025 PubMedCrossRefGoogle Scholar
  82. 82.
    Cicinelli E, Matteo M, Tinelli R et al (2014) Chronic endometritis due to common bacteria is prevalent in women with recurrent miscarriage as confirmed by improved pregnancy outcome after antibiotic treatment. Reprod Sci 21:640–647PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Cicinelli E, Matteo M, Trojano G et al (2017) Chronic endometritis in patients with unexplained infertility: prevalence and effects of antibiotic treatment on spontaneous conception. Am J Reprod Immunol 104:e12782–e12786.  https://doi.org/10.1111/aji.12782 CrossRefGoogle Scholar
  84. 84.
    Kitaya K (2011) Prevalence of chronic endometritis in recurrent miscarriages. Fertil Steril 95:1156–1158PubMedCrossRefGoogle Scholar
  85. 85.
    Kitaya K, Matsubayashi H, Takaya Y et al (2017) Live birth rate following oral antibiotic treatment for chronic endometritis in infertile women with repeated implantation failure. Am J Reprod Immunol.  https://doi.org/10.1111/aji.12719 PubMedCrossRefGoogle Scholar
  86. 86.
    McQueen DB, Bernardi LA, Stephenson MD (2014) Chronic endometritis in women with recurrent early pregnancy loss and/or fetal demise. Fertil Steril 101:1026–1030.  https://doi.org/10.1016/j.fertnstert.2013.12.031 PubMedCrossRefGoogle Scholar
  87. 87.
    McQueen DB, Perfetto CO, Hazard FK, Lathi RB (2015) Pregnancy outcomes in women with chronic endometritis and recurrent pregnancy loss. Fertil Steril 104:927–931PubMedCrossRefGoogle Scholar
  88. 88.
    Zolghadri J, Momtahan M, Aminian K et al (2011) The value of hysteroscopy in diagnosis of chronic endometritis in patients with unexplained recurrent spontaneous abortion. Eur J Obstet Gynecol Reprod Biol 155:217–220.  https://doi.org/10.1016/j.ejogrb.2010.12.010 PubMedCrossRefGoogle Scholar
  89. 89.
    Greenwood SM, Moran JJ (1981) Chronic endometritis: morphologic and clinical observations. Obstet Gynecol 58:176–184PubMedGoogle Scholar
  90. 90.
    Romero R, Espinoza J, Mazor M (2004) Can endometrial infection/inflammation explain implantation failure, spontaneous abortion, and preterm birth after in vitro fertilization? Fertil Steril 82:799–804.  https://doi.org/10.1016/j.fertnstert.2004.05.076 PubMedCrossRefGoogle Scholar
  91. 91.
    Park HJ, Kim YS, Yoon TK, Lee WS (2016) Chronic endometritis and infertility. Clin Exp Reprod Med 43:185.  https://doi.org/10.5653/cerm.2016.43.4.185 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Cicinelli E, De Ziegler D, Nicoletti R et al (2009) Poor reliability of vaginal and endocervical cultures for evaluating microbiology of endometrial cavity in women with chronic endometritis. Gynecol Obstet Invest 68:108–115.  https://doi.org/10.1159/000223819 PubMedCrossRefGoogle Scholar
  93. 93.
    Cicinelli E, Matteo M, Tinelli R et al (2015) Prevalence of chronic endometritis in repeated unexplained implantation failure and the IVF success rate after antibiotic therapy. Hum Reprod 30:323–330.  https://doi.org/10.1093/humrep/deu292 PubMedCrossRefGoogle Scholar
  94. 94.
    Kitaya K, Tada Y, Hayashi T et al (2014) Comprehensive endometrial immunoglobulin subclass analysis in infertile women suffering from repeated implantation failure with or without chronic endometritis. Am J Reprod Immunol 72:386–391.  https://doi.org/10.1111/aji.12277 PubMedCrossRefGoogle Scholar
  95. 95.
    Di Pietro C, Cicinelli E, Guglielmino MR et al (2013) Altered transcriptional regulation of cytokines, growth factors, and apoptotic proteins in the endometrium of infertile women with chronic endometritis. Am J Reprod Immunol 69:509–517.  https://doi.org/10.1111/aji.12076 PubMedCrossRefGoogle Scholar
  96. 96.
    Chen Y‑Q, Fang R‑L, Luo Y‑N, Luo C‑Q (2016) Analysis of the diagnostic value of CD138 for chronic endometritis, the risk factors for the pathogenesis of chronic endometritis and the effect of chronic endometritis on pregnancy: a cohort study. BMC Womens Health 16:60.  https://doi.org/10.1186/s12905-016-0341-3 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Kannar V, Lingaiah HKM, Sunita V (2012) Evaluation of endometrium for chronic endometritis by using syndecan-1 in abnormal uterine bleeding. J Lab Physicians 4:69–73.  https://doi.org/10.4103/0974-2727.105584 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Bayer-Garner IB, Korourian S (2001) Plasma cells in chronic endometritis are easily identified when stained with syndecan-1. Mod Pathol 14:877–879.  https://doi.org/10.1038/modpathol.3880405 PubMedCrossRefGoogle Scholar
  99. 99.
    Wijdenes J, Vooijs WC, Clément C et al (1996) A plasmocyte selective monoclonal antibody (B-B4) recognizes syndecan-1. Br J Haematol 94:318–323PubMedCrossRefGoogle Scholar
  100. 100.
    Bayer-Garner IB, Nickell JA, Korourian S (2004) Routine syndecan-1 immunohistochemistry aids in the diagnosis of chronic endometritis. Arch Pathol Lab Med 128:1000–1003.  https://doi.org/10.1043/1543-2165(2004)128<1000:RSIAIT>2.0.CO;2 PubMedCrossRefGoogle Scholar
  101. 101.
    Johnston-MacAnanny EB, Hartnett J, Engmann LL et al (2010) Chronic endometritis is a frequent finding in women with recurrent implantation failure after in vitro fertilization. Fertil Steril 93:437–441.  https://doi.org/10.1016/j.fertnstert.2008.12.131 PubMedCrossRefGoogle Scholar
  102. 102.
    Kasius JC, Fatemi HM, Bourgain C et al (2011) The impact of chronic endometritis on reproductive outcome. Fertil Steril 96:1451–1456.  https://doi.org/10.1016/j.fertnstert.2011.09.039 PubMedCrossRefGoogle Scholar
  103. 103.
    Cicinelli E, Resta L, Nicoletti R et al (2005) Endometrial micropolyps at fluid hysteroscopy suggest the existence of chronic endometritis. Hum Reprod 20:1386–1389.  https://doi.org/10.1093/humrep/deh779 PubMedCrossRefGoogle Scholar
  104. 104.
    El Hachem H, Crepaux V, May-Panloup P et al (2017) Recurrent pregnancy loss: current perspectives. Int J Womens Health 9:331–345.  https://doi.org/10.2147/IJWH.S100817 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Kitaya K, Tada Y, Taguchi S et al (2012) Local mononuclear cell infiltrates in infertile patients with endometrial macropolyps versus micropolyps. Hum Reprod 27:3474–3480.  https://doi.org/10.1093/humrep/des323 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Ruben-J. Kuon
    • 1
  • Volker Daniel
    • 2
  • Kilian Vomstein
    • 3
  • Maja Weber
    • 4
  • Timo Gaiser
    • 5
  • Bettina Toth
    • 3
  1. 1.Abteilung für Gynäkologische Endokrinologie und FertilitätsstörungenUniversitätsfrauenklinik HeidelbergHeidelbergDeutschland
  2. 2.Institut für ImmunologieUniversitätsklinikum HeidelbergHeidelbergDeutschland
  3. 3.Gynäkologische Endokrinologie und ReproduktionsmedizinMedizinische Universität InnsbruckInnsbruckÖsterreich
  4. 4.Reprognostics GbRUniversitätsmedizin MannheimMannheimDeutschland
  5. 5.Pathologisches InstitutUniversitätsmedizin MannheimMannheimDeutschland

Personalised recommendations