Advertisement

Gynäkologische Endokrinologie

, Volume 14, Issue 3, pp 180–187 | Cite as

Hormone, Schlaf, zirkadiane Rhythmen und metabolische Gesundheit

  • Bernd Schultes
  • Manfred Hallschmid
  • Henrik Oster
  • Britta Wilms
  • Sebastian M. Schmid
Leitthema

Zusammenfassung

Hintergrund

In unserer modernen 24-Stunden-Gesellschaft schlafen wir durchschnittlich immer weniger und unregelmäßiger. Parallel zu dieser Entwicklung hat die Häufigkeit von metabolischen Störungen wie Adipositas und Diabetes mellitus Typ 2 deutlich zugenommen.

Datenlage

Epidemiologische Studien geben Hinweise darauf, dass es einen Zusammenhang zwischen einer verminderten Quantität und Qualität des Schlafes sowie einem desynchronisierten Schlaf-Wach- bzw. Tag-Nacht-Rhythmus und den genannten metabolischen Störungen geben könnte. Unterstützt wird diese Annahme zudem durch eine ganze Reihe von experimentellen Studien, deren Ergebnisse einen zumindest kurzfristig starken Einfluss von Veränderungen im regulären Schlaf-Wach-Rhythmus auf die endokrine sowie behaviorale Regulation von Stoffwechselprozessen zeigen.

Schlussfolgerung

Auf Basis der vorliegenden wissenschaftlichen Evidenz, die hier zusammenfassend dargestellt wird, darf man annehmen, dass eine Verbesserung der Schlafhygiene ein wichtiger präventiver und therapeutischer Ansatzpunkt zur Verbesserung der metabolischen Gesundheit der Bevölkerung sein könnte.

Schlüsselwörter

Chronobiologie Metabolisches Syndrom Ghrelin Leptin Schlafstörungen, zirkadianer Rhythmus 

Hormones, sleep, circadian rhythms and metabolic health

Abstract

Background

In our modern society, sleep loss as well as sleep disturbances have become a common behavior. In parallel, the prevalence of metabolic diseases, such as obesity and type 2 diabetes mellitus has increased.

Data situation

Epidemiological studies have provided indications of a link between reduced quality, quantity, rhythm of sleep, day­night rhythms and metabolic disorders. Experimental studies support the hypothesis of a causal relationship showing a strong short-term influence of altered sleep-wake rhythms on the endocrine and behavioral regulation of metabolic processes.

Conclusion

Based on the literature research that is presented and summarized in this article, it can be assumed that improvements in sleep hygiene could be an important preventive and therapeutic approach to improve metabolic health.

Keywords

Chronobiology Metabolic syndrome Ghrelin Leptin Sleep disorders, circadian rhythm 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

Finanzierung und mögliche Interessenkonflikte: Unterstützt durch Fördermittel der Deutschen Forschungsgemeinschaft (SFBs 654, 134 & GRK 1957), des Bundesministeriums für Bildung und Forschung (BMBF) im Rahmen des Deutschen Diabetes-Zentrums (DZD e. V.; 01GI0925), der Helmholtz-Gemeinschaft ICEMED – Imaging and Curing Environmental Metabolic Diseases, der Europäischen Gesellschaft für Endokrinologie (ESE), des eSwiss Medical & Surgical Center AG, St. Gallen, sowie der Volkswagen-Stiftung.

B. Schultes, M. Hallschmid, H. Oster, B. Wilms und S.M. Schmid geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Alberti KGMM, Eckel RH, Grundy SM et al (2009) Harmonizing the Metabolic Syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120:1640–1645. doi: 10.1161/CIRCULATIONAHA.109.192644 CrossRefPubMedGoogle Scholar
  2. 2.
    Archer SN, Oster H (2015) How sleep and wakefulness influence circadian rhythmicity: effects of insufficient and mistimed sleep on the animal and human transcriptome. J Sleep Res. doi: 10.1111/jsr.12307 PubMedGoogle Scholar
  3. 3.
    Arora T, Hussain S, Hubert Lam K‑B et al (2013) Exploring the complex pathways among specific types of technology, self-reported sleep duration and body mass index in UK adolescents. Int J Obes 2005(37):1254–1260. doi: 10.1038/ijo.2012.209 CrossRefGoogle Scholar
  4. 4.
    Baldo BA, Hanlon EC, Obermeyer W et al (2013) Upregulation of gene expression in reward-modulatory Striatal Opioid systems by sleep loss. Neuropsychopharmacology. doi: 10.1038/npp.2013.174 PubMedPubMedCentralGoogle Scholar
  5. 5.
    Beebe DW, Simon S, Summer S et al (2013) Dietary intake following experimentally restricted sleep in adolescents. Sleep 36:827–834. doi: 10.5665/sleep.2704 PubMedPubMedCentralGoogle Scholar
  6. 6.
    Benedict C, Kern W, Schmid SM et al (2009) Early morning rise in hypothalamic – pituitary – adrenal activity: A role for maintaining the brain’s energy balance. Psychoneuroendocrinology 34:455–462. doi: 10.1016/j.psyneuen.2008.10.010 CrossRefPubMedGoogle Scholar
  7. 7.
    Benedict C, Hallschmid M, Lassen A et al (2011) Acute sleep deprivation reduces energy expenditure in healthy men. Am J Clin Nutr 93:1229–1236. doi: 10.3945/ajcn.110.006460 CrossRefPubMedGoogle Scholar
  8. 8.
    Benedict C, Brooks SJ, O’Daly OG et al (2012) Acute sleep deprivation enhances the brain’s response to hedonic food stimuli: An fMRI study. J Clin Endocrinol Metab 97:E443–E447. doi: 10.1210/jc.2011-2759 CrossRefPubMedGoogle Scholar
  9. 9.
    Bjorvatn B, Sagen IM, Øyane N et al (2007) The association between sleep duration, body mass index and metabolic measures in the Hordaland Health Study. J Sleep Res 16:66–76. doi: 10.1111/j.1365-2869.2007.00569.x CrossRefPubMedGoogle Scholar
  10. 10.
    Booth JN, Bromley LE, Darukhanavala AP et al (2012) Reduced physical activity in adults at risk for type 2 diabetes who curtail their sleep. Obesity (Silver Spring) 20:278–284. doi: 10.1038/oby.2011.306 CrossRefGoogle Scholar
  11. 11.
    Bosy-Westphal A, Hinrichs S, Jauch-Chara K et al (2008) Influence of partial sleep deprivation on energy balance and insulin sensitivity in healthy women. Obes Facts 1:7–7. doi: 10.1159/000158874 Google Scholar
  12. 12.
    Bromley LE, Booth JN, Kilkus JM et al (2012) Sleep restriction decreases the physical activity of adults at risk for type 2 diabetes. Sleep 35:977–984. doi: 10.5665/sleep.1964 PubMedPubMedCentralGoogle Scholar
  13. 13.
    Brondel L, Romer MA, Nougues PM et al (2010) Acute partial sleep deprivation increases food intake in healthy men. Am J Clin Nutr 91:1550–1559. doi: 10.3945/ajcn.2009.28523 CrossRefPubMedGoogle Scholar
  14. 14.
    Broussard JL, Ehrmann DA, Van Cauter E et al (2012) Impaired insulin signaling in human adipocytes after experimental sleep restriction. A randomized, crossover study. Ann Intern Med 157:549–557. doi: 10.7326/0003-4819-157-8-201210160-00005 CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Buxton OM, Marcelli E (2010) Short and long sleep are positively associated with obesity, diabetes, hypertension, and cardiovascular disease among adults in the United States. Soc Sci Med 71:1027–1036. doi: 10.1016/j.socscimed.2010.05.041 CrossRefPubMedGoogle Scholar
  16. 16.
    Buxton OM, Pavlova M, Reid EW et al (2010) Sleep restriction for 1 week reduces insulin sensitivity in healthy men. Diabetes 59:2126–2133. doi: 10.2337/db09-0699 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Buxton OM, Cain SW, O’Connor SP et al (2012) Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci Transl Med 4:129ra43. doi: 10.1126/scitranslmed.3003200 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Calvin AD, Carter RE, Adachi T et al (2013) Effects of experimental sleep restriction on caloric intake and activity energy expenditure. Chest 144:79–86. doi: 10.1378/chest.12-2829 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cappuccio FP, Taggart FM, Kandala N‑B et al (2008) Meta-analysis of short sleep duration and obesity in children and adults. Sleep 31:619–626PubMedPubMedCentralGoogle Scholar
  20. 20.
    Cappuccio FP, D’Elia L, Strazzullo P, Miller MA (2009) Quantity and quality of sleep and incidence of type 2 diabetes: A systematic review and meta-analysis. Diabetes Care 33:414–420. doi: 10.2337/dc09-1124 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cappuccio FP, D’Elia L, Strazzullo P, Miller MA (2010) Sleep duration and all-cause mortality: A systematic review and meta-analysis of prospective studies. Sleep 33:585–592PubMedPubMedCentralGoogle Scholar
  22. 22.
    Castañeda TR, Tong J, Datta R et al (2010) Ghrelin in the regulation of body weight and metabolism. Front Neuroendocrinol 31:44–60. doi: 10.1016/j.yfrne.2009.10.008 CrossRefPubMedGoogle Scholar
  23. 23.
    Czeisler CA (2011) Impact of sleepiness and sleep deficiency on public health – utility of biomarkers. J Clin Sleep Med 7:S6–S8. doi: 10.5664/JCSM.1340 PubMedPubMedCentralGoogle Scholar
  24. 24.
    Donga E, van Dijk M, van Dijk JG et al (2010) A single night of partial sleep deprivation induces insulin resistance in multiple metabolic pathways in healthy subjects. J Clin Endocrinol Metab 95:2963–2968. doi: 10.1210/jc.2009-2430 CrossRefPubMedGoogle Scholar
  25. 25.
    Gangwisch JE, Heymsfield SB, Boden-Albala B et al (2007) Sleep duration as a risk factor for diabetes incidence in a large US sample. Sleep 30:1667–1673PubMedPubMedCentralGoogle Scholar
  26. 26.
    Gangwisch JE, Malaspina D, Babiss LA et al (2010) Short sleep duration as a risk factor for hypercholesterolemia: Analyses of the national longitudinal study of adolescent health. Sleep 33:956–961PubMedPubMedCentralGoogle Scholar
  27. 27.
    Gangwisch JE, Feskanich D, Malaspina D et al (2013) Sleep duration and risk for hypertension in women: Results from the Nurses’ Health Study. Am J Hypertens 26:903–911. doi: 10.1093/ajh/hpt044 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Grandner MA, Hale L, Moore M, Patel NP (2010) Mortality associated with short sleep duration: The evidence, the possible mechanisms, and the future. Sleep Med Rev 14:191–203. doi: 10.1016/j.smrv.2009.07.006 CrossRefPubMedGoogle Scholar
  29. 29.
    Greer SM, Goldstein AN, Walker MP (2013) The impact of sleep deprivation on food desire in the human brain. Nat Commun 4:2259. doi: 10.1038/ncomms3259 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Guo Y, Liu Y, Huang X et al (2013) The effects of shift work on sleeping quality, hypertension and diabetes in retired workers. PLoS ONE. doi: 10.1371/journal.pone.0071107 Google Scholar
  31. 31.
    Hall MH, Muldoon MF, Jennings JR et al (2008) Self-reported sleep duration is associated with the metabolic syndrome in midlife adults. Sleep 31:635–643PubMedPubMedCentralGoogle Scholar
  32. 32.
    Hall MH, Okun ML, Sowers M et al (2012) Sleep is associated with the metabolic syndrome in a multi-ethnic cohort of Midlife women: The SWAN sleep study. Sleep 35:783–790. doi: 10.5665/sleep.1874 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hallschmid M et al (2015) Kurzer, gestörter und unregelmäßiger Schlaf: Die schädlichen Auswirkungen auf den menschlichen Stoffwechsel. Dtsch Med Wochenschr 140(17):1278–1283CrossRefPubMedGoogle Scholar
  34. 34.
    Hayes AL, Xu F, Babineau D, Patel SR (2011) Sleep duration and circulating adipokine levels. Sleep 34:147PubMedPubMedCentralGoogle Scholar
  35. 35.
    Herzog N, Jauch-Chara K, Hyzy F et al (2013) Selective slow wave sleep but not rapid eye movement sleep suppression impairs morning glucose tolerance in healthy men. Psychoneuroendocrinology 38:2075–2082. doi: 10.1016/j.psyneuen.2013.03.018 CrossRefPubMedGoogle Scholar
  36. 36.
    Hogenkamp PS, Nilsson E, Nilsson VC et al (2013) Acute sleep deprivation increases portion size and affects food choice in young men. Psychoneuroendocrinology 38:1668–1674. doi: 10.1016/j.psyneuen.2013.01.012 CrossRefPubMedGoogle Scholar
  37. 37.
    Hung H‑C, Yang Y‑C, Ou H‑Y et al (2013) The association between self-reported sleep quality and overweight in a Chinese population. Obesity (Silver Spring) 21:486–492. doi: 10.1002/oby.20259 CrossRefGoogle Scholar
  38. 38.
    Jennings JR, Muldoon MF, Hall M et al (2007) Self-reported sleep quality is associated with the metabolic syndrome. Sleep 30:219–223PubMedGoogle Scholar
  39. 39.
    Jung CM, Melanson EL, Frydendall EJ et al (2010) Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. J Physiol 589:235–244. doi: 10.1113/jphysiol.2010.197517 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kaneita Y, Uchiyama M, Yoshiike N, Ohida T (2008) Associations of usual sleep duration with serum lipid and lipoprotein levels. Sleep 31:645PubMedGoogle Scholar
  41. 41.
    Killick R, Banks S, Liu PY (2012) Implications of sleep restriction and recovery on metabolic outcomes. J Clin Endocrinol Metab 97:3876–3890. doi: 10.1210/jc.2012-1845 CrossRefPubMedGoogle Scholar
  42. 42.
    Klingenberg L, Chaput J‑P, Holmbäck U et al (2013) Acute sleep restriction reduces insulin sensitivity in adolescent boys. Sleep 36:1085–1090. doi: 10.5665/sleep.2816 PubMedPubMedCentralGoogle Scholar
  43. 43.
    Klingenberg L, Chaput J‑P, Sjödin A (2013) Reply to L Bennedsen et al. Am J Clin Nutr 97:446–447CrossRefPubMedGoogle Scholar
  44. 44.
    Leproult R, Van Cauter E (2010) Role of sleep and sleep loss in hormonal release and metabolism. Endocr Dev 17:11–21. doi: 10.1159/000262524 PubMedGoogle Scholar
  45. 45.
    Levi F, Schibler U (2007) Circadian rhythms: Mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol 47:593–628. doi: 10.1146/annurev.pharmtox.47.120505.105208 CrossRefPubMedGoogle Scholar
  46. 46.
    Luyster FS, Strollo PJJ, Zee PC et al (2012) Sleep: A health imperative. Sleep 35:727–734. doi: 10.5665/sleep.1846 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Magee CA, Huang X‑F, Iverson DC, Caputi P (2009) Acute sleep restriction alters neuroendocrine hormones and appetite in healthy male adults. Sleep Biol Rhythms 7:125–127. doi: 10.1111/j.1479-8425.2009.00396.x CrossRefGoogle Scholar
  48. 48.
    Maquet P, Dive D, Salmon E et al (1990) Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18 F]2-fluoro-2-deoxy-D-glucose method. Brain Res 513:136–143CrossRefPubMedGoogle Scholar
  49. 49.
    Markwald RR, Melanson EL, Smith MR et al (2013) Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc Natl Acad Sci U S A 110:5695–5700. doi: 10.1073/pnas.1216951110 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Martins PJF, Marques MS, Tufik S, D’Almeida V (2010) Orexin activation precedes increased NPY expression, hyperphagia, and metabolic changes in response to sleep deprivation. Am J Physiol Endocrinol Metab 298:E726–E734. doi: 10.1152/ajpendo.00660.2009 CrossRefPubMedGoogle Scholar
  51. 51.
    Meng L, Zheng Y, Hui R (2013) The relationship of sleep duration and insomnia to risk of hypertension incidence: A meta-analysis of prospective cohort studies. Hypertens Res 36:985–995. doi: 10.1038/hr.2013.70 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Moller-Levet CS, Archer SN, Bucca G et al (2013) Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc Natl Acad Sci U SA 110:E1132–E1141. doi: 10.1073/pnas.1217154110 CrossRefGoogle Scholar
  53. 53.
    Morselli LL, Guyon A, Spiegel K (2012) Sleep and metabolic function. Pflugers Arch 463:139–160. doi: 10.1007/s00424-011-1053-z CrossRefPubMedGoogle Scholar
  54. 54.
    Morton GJ, Cummings DE, Baskin DG et al (2006) Central nervous system control of food intake and body weight. Nature 443:289–295. doi: 10.1038/nature05026 CrossRefPubMedGoogle Scholar
  55. 55.
    Nedeltcheva AV, Kessler L, Imperial J, Penev PD (2009) Exposure to recurrent sleep restriction in the setting of high caloric intake and physical inactivity results in increased insulin resistance and reduced glucose tolerance. J Clin Endocrinol Metab 94:3242–3250. doi: 10.1210/jc.2009-0483 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Nedeltcheva AV, Kilkus JM, Imperial J et al (2009) Sleep curtailment is accompanied by increased intake of calories from snacks. Am J Clin Nutr 89:126–133. doi: 10.3945/ajcn.2008.26574 CrossRefPubMedGoogle Scholar
  57. 57.
    Nedeltcheva AV, Kilkus JM, Imperial J et al (2010) Insufficient sleep undermines dietary efforts to reduce adiposity. Ann Intern Med 153:435–441. doi: 10.7326/0003-4819-153-7-201010050-00006 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Nogueiras R, Tschop MH, Zigman JM (2008) CNS regulation of energy metabolism: Ghrelin versus Leptin. Ann N Y Acad Sci 1126:14. doi: 10.1196/annals.1433.054 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Omisade A, Buxton OM, Rusak B (2010) Impact of acute sleep restriction on cortisol and leptin levels in young women. Physiol Behav 99:651–656. doi: 10.1016/j.physbeh.2010.01.028 CrossRefPubMedGoogle Scholar
  60. 60.
    Pan A, Schernhammer ES, Sun Q, Hu FB (2011) Rotating night shift work and risk of type 2 diabetes: Two prospective cohort studies in women. PLoS Med. doi: 10.1371/journal.pmed.1001141 PubMedPubMedCentralGoogle Scholar
  61. 61.
    Penev PD (2012) Update on energy homeostasis and insufficient sleep. J Clin Endocrinol Metab 97:1792–1801. doi: 10.1210/jc.2012-1067 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Puttonen S, Viitasalo K, Härmä M (2012) The relationship between current and former shift work and the metabolic syndrome. Scand J Work Environ Health 38:343–348. doi: 10.5271/sjweh.3267 CrossRefPubMedGoogle Scholar
  63. 63.
    Reynolds AC, Dorrian J, Liu PY et al (2012) Impact of five nights of sleep restriction on glucose metabolism, leptin and testosterone in young adult men. PLoS ONE 7:e41218. doi: 10.1371/journal.pone.0041218 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Rodríguez A, Gómez-Ambrosi J, Catalán V et al (2009) Acylated and desacyl ghrelin stimulate lipid accumulation in human visceral adipocytes. Int J Obes 2005(33):541–552. doi: 10.1038/ijo.2009.40 CrossRefGoogle Scholar
  65. 65.
    Roehrs T, Turner L, Roth T (2000) Effects of sleep loss on waking actigraphy. Sleep 23:793–797PubMedGoogle Scholar
  66. 66.
    Sakurai T (2007) The neural circuit of orexin (hypocretin): Maintaining sleep and wakefulness. Nat Rev Neurosci 8:171–181. doi: 10.1038/nrn2092 CrossRefPubMedGoogle Scholar
  67. 67.
    Scheer FAJL, Hilton MF, Mantzoros CS, Shea SA (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 106:4453–4458. doi: 10.1073/pnas.0808180106 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Schmid SM, Hallschmid M, Jauch-Chara K et al (2008) A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men. J Sleep Res 17:331–334. doi: 10.1111/j.1365-2869.2008.00662.x CrossRefPubMedGoogle Scholar
  69. 69.
    Schmid SM, Hallschmid M, Jauch-Chara K et al (2009) Short-term sleep loss decreases physical activity under free-living conditions but does not increase food intake under time-deprived laboratory conditions in healthy men. Am J Clin Nutr 90:1476–1482. doi: 10.3945/ajcn.2009.27984 CrossRefPubMedGoogle Scholar
  70. 70.
    Schmid SM, Jauch-Chara K, Hallschmid M, Schultes B (2009) Mild sleep restriction acutely reduces plasma glucagon levels in healthy men. J Clin Endocrinol Metab 94:5169–5173. doi: 10.1210/jc.2009-0969 CrossRefPubMedGoogle Scholar
  71. 71.
    Schmid SM, Hallschmid M, Jauch-Chara K et al (2011) Disturbed glucoregulatory response to food intake after moderate sleep restriction. Sleep 34:371–377PubMedPubMedCentralGoogle Scholar
  72. 72.
    Schultes B, Schmid S, Peters A et al (2005) Sleep loss and the development of diabetes: A review of current evidence. Exp Clin Endocrinol Diabetes 113:563–567. doi: 10.1055/s-2005-872944 CrossRefPubMedGoogle Scholar
  73. 73.
    Sharma SK, Agrawal S, Damodaran D et al (2011) CPAP for the metabolic syndrome in patients with obstructive sleep apnea. N Engl J Med 365:2277–2286. doi: 10.1056/NEJMoa1103944 CrossRefPubMedGoogle Scholar
  74. 74.
    Simpson NS, Banks S, Dinges DF (2010) Sleep restriction is associated with increased morning plasma leptin concentrations, especially in women. Biol Res Nurs 12:47–53. doi: 10.1177/1099800410366301 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Spaeth AM, Dinges DF, Goel N (2013) Effects of experimental sleep restriction on weight gain, caloric intake, and meal timing in healthy adults. Sleep 36:981–990. doi: 10.5665/sleep.2792 PubMedPubMedCentralGoogle Scholar
  76. 76.
    Spiegel K, Leproult R, Van Cauter E (1999) Impact of sleep debt on metabolic and endocrine function. Lancet 354:1435–1439. doi: 10.1016/S0140-6736(99)01376-8 CrossRefPubMedGoogle Scholar
  77. 77.
    Spiegel K, Leproult R, L’Hermite-Balériaux M et al (2004) Leptin levels are dependent on sleep duration: Relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab 89:5762–5771. doi: 10.1210/jc.2004-1003 CrossRefPubMedGoogle Scholar
  78. 78.
    Spiegel K, Tasali E, Penev P, Cauter EV (2004) Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med 141:846–850. doi: 10.7326/0003-4819-141-11-200412070-00008 CrossRefPubMedGoogle Scholar
  79. 79.
    Stamatakis KA, Punjabi NM (2010) EFfects of sleep fragmentation on glucose metabolism in normal subjects. Chest J 137(95–101). doi: 10.1378/chest.09-0791 Google Scholar
  80. 80.
    St-Onge M‑P, Roberts AL, Chen J et al (2011) Short sleep duration increases energy intakes but does not change energy expenditure in normal-weight individuals. Am J Clin Nutr 94:410–416. doi: 10.3945/ajcn.111.013904 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    St-Onge M‑P, McReynolds A, Trivedi ZB et al (2012) Sleep restriction leads to increased activation of brain regions sensitive to food stimuli. Am J Clin Nutr 95:818–824. doi: 10.3945/ajcn.111.027383 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    St-Onge M‑P, Wolfe S, Sy M et al (2013) Sleep restriction increases the neuronal response to unhealthy food in normal-weight individuals. Int J Obes. doi: 10.1038/ijo.2013.114 Google Scholar
  83. 83.
    Tasali E, Leproult R, Ehrmann DA, Van Cauter E (2008) Slow-wave sleep and the risk of type 2 diabetes in humans. Proc Natl Acad Sci U S A 105:1044–1049CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Bernd Schultes
    • 1
  • Manfred Hallschmid
    • 2
    • 3
    • 4
  • Henrik Oster
    • 5
  • Britta Wilms
    • 5
  • Sebastian M. Schmid
    • 5
    • 6
  1. 1.eSwiss Medical & Surgical CenterSt. GallenSchweiz
  2. 2.Institut für medizinische Psychologie und VerhaltensneurobiologieUniversität TübingenTübingenDeutschland
  3. 3.Deutsches Zentrum für DiabetesforschungTübingenDeutschland
  4. 4.Institut für Diabetesforschung und Metabolische Erkrankungen der Helmholtz Gesellschaft München an der Universität MünchenUniversität TübingenTübingenDeutschland
  5. 5.Medizinische Klinik IUniversität zu LübeckLübeckDeutschland
  6. 6.Deutsches Zentrum für DiabetesforschungLübeckDeutschland

Personalised recommendations