Gynäkologische Endokrinologie

, Volume 9, Issue 1, pp 14–18

Hormone und Gehirnfunktion im Alter

Leitthema

Zusammenfassung

Frauen erkranken im Vergleich zu Männern doppelt so häufig an einer Demenz. Hormonelle Unterschiede könnten hierbei eine Rolle spielen. Es gibt zahlreiche Hinweise auf einen neurotropen sowie neuro- und psychoprotektiven Effekt der Östrogene. Klinische Studien zum Einfluss von Östrogenen auf die Kognition sind jedoch umstritten. Einen Grund hierfür könnte der Zeitpunkt der Östrogeninitiierung („window of opportunity“) darstellen, einen anderen der Zustand des Expositionsubstrats, die Neuronengesundheit („healthy cell bias“). Demnach ist möglicherweise eine hormonelle Primärprävention des Kognitionsverlusts bei Frauen möglich, eine Sekundär- oder Tertiärprävention der Demenz jedoch nicht. Bis zur abschließenden Klärung der Frage, ob eine hormonelle Primärprävention der Demenz sinnvoll ist, gelten die Empfehlungen der Neurologie, welche auf den Ausschluss von inneren und äußeren Risikofaktoren abzielen.

Schlüsselwörter

Kognition Demenz Östrogene Hormontherapie Window of opportunity 

Hormones and brain function in the elderly

Abstract

In comparison to men, women are twice as frequently affected by dementia. Hormonal sex differences might be one reason. There is a tremendous body of scientific evidence that estrogens are neurotrophic, neuroprotective, and psychoprotective. However, clinical trials investigating the effect of estrogens on cognition are controversial. This might be due to the time point (“window of opportunity”) and the neuronal health status (“healthy cell bias”), respectively, when estrogens are initiated. Therefore, primary hormonal prevention of cognitive decline might be possible, but secondary and tertiary prevention of dementia is not. However, until further research has revealed clear evidence that estrogens are effective in primary prevention the recommendations of the neurological society should be followed aiming to avoid intrinsic and extrinsic risk factors of dementia.

Keywords

Cognition Dementia Estrogens Hormone therapy Window of opportunity 

Literatur

  1. 1.
    Alvarez-de-la-Rosa M, Silva I, Nilsen J et al (2005) Estradiol prevents neural tau hyperphosphorylation characteristic of Alzheimer’s disease. Ann N Y Acad Sci 1052:210–224CrossRefPubMedGoogle Scholar
  2. 2.
    Bagger YZ, Tankó LB, Alexandersen P et al (2005) Early postmenopausal hormone therapy may prevent cognitive impairment later in life. Menopause 12:12–17CrossRefPubMedGoogle Scholar
  3. 3.
    Binder EF, Schectman KB, Birge SJ et al (2001) Effects of hormone replacement therapy on cognitive performance in elderly women. Maturitas 38:137–146CrossRefPubMedGoogle Scholar
  4. 4.
    Burgmans S, van Boxtel MP, Vuurman EF et al (2009) The prevalence of cortical gray matter atrophy may be overestimated in the healthy aging brain. Neuropsychology 23:541–550CrossRefPubMedGoogle Scholar
  5. 5.
    Clarkson TB (2007) Estrogen effects on arteries vary with stage of reproductive life and extent of subclinical atherosclerosis progression. Menopause 14:373–384CrossRefPubMedGoogle Scholar
  6. 6.
    Day M, Sung A, Logue S et al (2005) Beta estrogen receptor knockout (BERKO) mice present attenuated hippocampal CA1 long-term potentiation and related memory deficits in contextual fear conditioning. Behav Brain Res 164(1):128–131CrossRefPubMedGoogle Scholar
  7. 7.
    Dhandapani KM, Brann DW (2002) Protective effects of estrogen and selective estrogen receptor modulators in the brain. Biol Reprod 67:1379–1385CrossRefPubMedGoogle Scholar
  8. 8.
    Ditkoff EC, Crary WG, Cristo M, Lobo RA (1991) Estrogen improves psychological function in asymptomatic postmenopausal women. Obstet Gynecol 78:991–995PubMedGoogle Scholar
  9. 9.
    Drummond ES, Harvey AR, Martins RN (2009) Androgens and Alzheimer’s disease. Curr Opin Endocrinol Diabetes Obes 16:254–259CrossRefPubMedGoogle Scholar
  10. 10.
    Ferrari E, Magri F (2008) Role of neuroendocrine pathways in cognitive decline during aging. Ageing Res Rev 7:225–233CrossRefPubMedGoogle Scholar
  11. 11.
    Fuh JL, Wang SJ, Lee SJ et al (2006) A longitudinal study of cognition change during early menopausal transition in a rural community. Maturitas 53:447–453CrossRefPubMedGoogle Scholar
  12. 12.
    Gibbs RB (2000) Long-term treatment with estrogen and progesterone enhances acquisition of a spatial memory task by ovariectomized aged rats. Neurobiol Aging 21:107–116CrossRefPubMedGoogle Scholar
  13. 13.
    Gillies GE, McArthur S (2010) Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacological Rev 62:155-198CrossRefGoogle Scholar
  14. 14.
    Grimley Evans J, Malouf R, Huppert F, van Niekerk JK (2006) Dehydroepiandrosterone (DHEA) supplementation for cognitive function in healthy elderly people. Cochrane Database Syst Rev 4:CD006221Google Scholar
  15. 15.
    Henderson VW (2000) Hormone therapy and the brain: a clinical perspective on the role of estrogen. Parthenon Publishing, New YorkGoogle Scholar
  16. 16.
    Henderson VW, Guthrie JR, Dudley EC et al (2003) Estrogen exposures and memory at midlife: a population-based study of women. Neurology 60:1369–1371CrossRefPubMedGoogle Scholar
  17. 17.
    Herlitz A, Thilers P, Habib R (2007) Endogenous estrogen is not associated with cognitive performance before, during, or after menopause. Menopause 14:425–431CrossRefPubMedGoogle Scholar
  18. 18.
    Lethaby A, Hogervorst E, Richards M et al (2008) Hormone replacement therapy for cognitive function in postmenopausal women. Cochrane Database Syst Rev 1:CD003122PubMedGoogle Scholar
  19. 19.
    Hickman SE, Howieson DB, Dame A et al (2000) Longitudinal analysis of the effects of the aging process on neuropsychological test performance in the healthy young-old and oldest-old. Dev Neuropsychol 17:323–337CrossRefPubMedGoogle Scholar
  20. 20.
    Hodis HN, Mack WJ, Lobo RA et al (2001) Estrogen in the Prevention of Atherosclerosis Trial Research Group. Estrogen in the prevention of atherosclerosis. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 135:939–953PubMedGoogle Scholar
  21. 21.
    Hodis HN, Mack WJ, Azen SP et al (2003) Women’s Estrogen-Progestin Lipid-Lowering Hormone Atherosclerosis Regression Trial Research Group. Hormone therapy and the progression of coronary-artery atherosclerosis in postmenopausal women. N Engl J Med 349:535–545CrossRefPubMedGoogle Scholar
  22. 22.
    Janowsky JS, Chavez B, Orwoll E (2000) Sex steroids modify working memory. J Cogn Neurosci 12:407–414CrossRefPubMedGoogle Scholar
  23. 23.
    Kok HS, Kuh D, Cooper R et al (2006) Cognitive function across the life course and the menopausal transition in a British birth cohort. Menopause 13:19–27CrossRefPubMedGoogle Scholar
  24. 24.
    Lacreuse A, Verreault M, Herndon JG (2001) Fluctuations in spatial recognition memory across the menstrual cycle in female rhesus monkeys. Psychoneuroendocrinology 26:623–639CrossRefPubMedGoogle Scholar
  25. 25.
    Landauer N, Kohama SG, Voytko ML, Neuringer M (2004) Effects of menstrual cycle status on visuospatial attention in aged rhesus monkeys. Soc Neurosci Abstr 34:779.2Google Scholar
  26. 26.
    Diener HC, Putzki N (Hrsg) (2008) Leitlinien für Diagnostik und Therapie in der Neurologie; 4. Aufl. Georg Thieme Verlag, Stuttgart S 654 ffGoogle Scholar
  27. 27.
    Luetters C, Huang MH, Seeman T et al (2007) Menopause transition stage and endogenous estradiol and follicle-stimulating hormone levels are not related to cognitive performance: cross-sectional results from the study of women’s health across the nation (SWAN). J Womens Health (Larchmt) 16:331–344CrossRefGoogle Scholar
  28. 28.
    Lyons-Warren A, Lillie R, Hershey T (2004) Short- and long-term spatial delayed response performance across the lifespan. Dev Neuropsychol 26:661–678CrossRefPubMedGoogle Scholar
  29. 29.
    Olcese JM, Cao C, Mori T et al (2009) Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J Pineal Res 47:82–96CrossRefPubMedGoogle Scholar
  30. 30.
    Petanceska SS, Nagy V, Frail D, Gandy S (2000) Ovariectomy and 17beta-estradiol modulate the levels of Alzheimer’s amyloid beta peptides in brain. Neurology 54:2212–2217PubMedGoogle Scholar
  31. 31.
    Phillips SM, Sherwin BB (1992) Effects of estrogen on memory function in surgically menopausal women. Psychoneuroendocrinology 17:485–495CrossRefPubMedGoogle Scholar
  32. 32.
    Resnick SM, Espeland MA, An Y et al (2009) Effects of conjugated equine estrogens on cognition and affect in postmenopausal women with prior hysterectomy. J Clin Endocrinol Metab 94:4152–61CrossRefPubMedGoogle Scholar
  33. 33.
    Resnick SM, Maki PM, Rapp SR et al (2006) Effects of combination estrogen plus progestin hormone treatment on cognition and affect. J Clin Endocrinol Metab 91:1802–1810CrossRefPubMedGoogle Scholar
  34. 34.
    Roberts JA, Gilardi KVK, Lasley B, Rapp PR (1997) Reproductive senescence predicts cognitive decline in aged female monkeys. Neuroreport 8:2047–2051CrossRefPubMedGoogle Scholar
  35. 35.
    Robertson D, Craig M, van Amelsvoort T et al (2009) Effects of estrogen therapy on age-related differences in gray matter concentration. Climacteric 12:301–309CrossRefPubMedGoogle Scholar
  36. 36.
    Rocca WA, Bower JH, Maraganore DM et al (2007) Increased risk of cognitive impairment or dementia in women who underwent oophorectomy before menopause. Neurology 69:1074–1083CrossRefPubMedGoogle Scholar
  37. 37.
    Seshadri S, Wolf PA (2007) Lifetime risk of stroke and dementia: current concepts, and estimates from the Framingham Study. Lancet Neurol 6:1106–1114CrossRefPubMedGoogle Scholar
  38. 38.
    Sherwin BB (1988) Estrogen and/or androgen replacement therapy and cognitive functioning in surgically menopausal women. Psychoneuroendocrinology 13:345–357CrossRefPubMedGoogle Scholar
  39. 39.
    Sherwin BB (2006) The critical period hypothesis: Can it explain discrepancies in the Oestrogen-Cognition literature? J Neuroendocrinol 19:77–81CrossRefGoogle Scholar
  40. 40.
    Sherwin BB (2006) Estrogen and cognitive aging in women. Neuroscience 138:1021–1026CrossRefPubMedGoogle Scholar
  41. 41.
    Shumaker SA, Legault C, Kuller L et al (2004) Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women. JAMA 291:2947–2958CrossRefPubMedGoogle Scholar
  42. 42.
    Shumaker SA, Legault C, Rapp SR et al (2003) Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women. JAMA 289:2651–2662CrossRefPubMedGoogle Scholar
  43. 43.
    Spencer JL, Waters EM, Romeo RD et al (2008) Uncovering the mechanisms of estrogen effects on hippocampal function. Front Neuroendocrinol 29:219–237CrossRefPubMedGoogle Scholar
  44. 44.
    Zandi PP, Carlson MC, Plassman BL et al (2002) Hormone replacement therapy and incidence of Alzheimer disease in older women: the Cache County Study. JAMA 288:2123–2129CrossRefPubMedGoogle Scholar
  45. 45.
    Zheng H, Xu H, Uljon SN et al (2002) Modulation of A(beta) peptides by estrogen in mouse models. J Neurochem 80:191–196CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Abteilung für gynäkologische Endokrinologie und ReproduktionsmedizinUniversitätsklinik für Frauenheilkunde, Inselspital BernBernSchweiz

Personalised recommendations