Gynäkologische Endokrinologie

, Volume 6, Supplement 1, pp S26–S27 | Cite as

Hormonprofil und Embryoqualität, der Schlüssel zum Erfolg (MERiT)

  • P. Platteau


  1. 1.
    Wolfenson C, Groisman J, Couto A et al. (2005) Batch-to-batch consistency of human-derived gonadotropin preparations compared with recombinant preparations. Reprod Biomed Online 10(4): 442–454CrossRefGoogle Scholar
  2. 2.
    European and Israeli Study Group on Highly Purified Menotropin versus Recombinant Follicle-Stimulating Hormone (2002) Efficacy and safety of highly purified menotropin versus recombinant follicle-stimulating hormone in in vitro fertilization/intracytoplasmic sperm injection cycles: a randomized, comparative trial. Fertil Steril 78(3): 520–528CrossRefGoogle Scholar
  3. 3.
    Platteau P, Smitz J, Albano C et al. (2004) Exogenous luteinizing hormone activity may influence the treatment outcome in in vitro fertilization but not in intracytoplasmic sperm injection cycles. Fertil Steril 81(5): 1401–1404CrossRefGoogle Scholar
  4. 4.
    Andersen AN, Devroey P, Arce JC (2006) Clinical outcome following stimulation with highly purified hMG or recombinant FSH in patients undergoing IVF: a randomized assessor-blind controlled trial. Hum Reprod 21: 3217–3227CrossRefGoogle Scholar
  5. 5.
    Hillier SG, Yong EL, Illingworth PJ et al. (1991) Effect of recombinant inhibin on androgen synthesis in cultured human thecal cells. Mol Cell Endocrinol 75: R1–R6CrossRefGoogle Scholar
  6. 6.
    Smyth CD, Miro F, Whitelaw PF et al. (1993) Ovarian thecal/interstitial androgen synthesis is enhanced by a follicle-stimulating hormone-stimulated paracrine mechanism. Endocrinology 133: 1532–1538CrossRefGoogle Scholar
  7. 7.
    Campbell BK, Baird DT (2001) Inhibin A is a follicle stimulating hormone-responsive marker of granulosa cell differentiation, which has both autocrine and paracrine actions in sheep. J Endocrinol 169: 333–345CrossRefGoogle Scholar
  8. 8.
    Magoffin DA, Hubert-Leslie D, Zachow RJ (1995) Estradiol-17β, insulin-like growth factor-I, and luteinizing hormone inhibit secretion of transforming growth factor β by rat ovarian theca-interstitial cells. Biol Reprod 53: 627–635CrossRefGoogle Scholar
  9. 9.
    Hernandez ER, Hurwitz A, Payne DW et al. (1990) Transforming growth factor-β inhibits ovarian androgen production: gene expression, cellular localization, mechanism(s), and site(s) of action. Endocrinology 127: 2804–2811CrossRefGoogle Scholar
  10. 10.
    Fournet N, Weitsman SR, Zachow RJ, Magoffin DA (1996) Transforming growth factor-β inhibits ovarian 17α-hydroxylase activity by a direct noncompetitive mechanism. Endocrinology 137: 166–174CrossRefGoogle Scholar
  11. 11.
    Fried G, Wramsby H, Tally M (1998) Transforming growth factor-β1, insulin-like growth factors, and insulin-like growth factor binding proteins in ovarian follicular fluid are differentially regulated by the type of ovarian hyperstimulation used for in vitro fertilization. Fertil Steril 70: 129–134CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2008

Authors and Affiliations

  1. 1.Academisch Ziekenhuis, Centrum Reproductieve GeneeskundeVrije Universiteit BrusselBrusselBelgium

Personalised recommendations