Gynäkologische Endokrinologie

, Volume 3, Issue 4, pp 251–260

Gesundheit der Kinder nach ART

Leitthema

Zusammenfassung

Seit Einführung und Verbreitung der assistierten Reproduktion (ART) werden die Gesundheit und die psychosoziale Entwicklung der danach geborenen Kinder kritisch hinterfragt. Die hierzu vorliegenden Daten werden in dieser Arbeit zusammengestellt und diskutiert. Bei den Kindern nach ART werden häufiger Fehlbildungen gefunden, ebenso ist die perinatale Morbidität dieser Kinder höher. Insgesamt entsprechen aber die Gesundheit, die mentale und die psychomotorische Entwicklung der der Kinder nach spontaner Konzeption. Auch Krebserkrankungen treten bei Kindern nach ART nicht häufiger auf. Allerdings konnten einige Registerstudien ein erhöhtes Risiko für neurologische Auffälligkeiten wie eine Zerebralparese zeigen. Ein niedriges Geburtsgewicht und ein niedriges Gestationsalter, wie es auch bei Einlingen nach ART häufiger gefunden wird, erwiesen sich als Risikofaktoren für das Auftreten von neurologischen Auffälligkeiten. Insgesamt deuten die Daten in die Richtung eines sterilitätsassoziierten Risikos. Ein genetisches Hintergrundsrisiko kann bei vielen Kinderwunschpatienten nicht ausgeschlossen werden, ebenso wie ein Einfluss durch die ART. Der unerfüllte Kinderwunsch an sich scheint aber einen Faktor darzustellen, der ernst genommen werden muss und offenbar zu einem erhöhten Risiko für Schwangerschaft und Geburt nach ART führt.

Schlüsselwörter

Assistierte Reproduktion Fehlbildung Entwicklung Wachstum Gesundheit 

Child health after ART

Abstract

Since the introduction of assisted reproduction (ART), the health and psychosocial development of the children born has been subject of concern. Data on the physical and mental health of children born after the use of ART techniques are summarized and discussed. Children born after ART have an increased risk for major malformations and an increase in perinatal morbidity. Generally, ART children are healthy, and mental and psychomotor development is similar to those born after spontaneous conception. Cancer risk is also not increased. However, some large registry-based studies have found an increase in neurological sequelae in children after ART. Low birth weight and gestational age, which are more often found even in singletons after ART, are independent risk factors for neurological sequelae such as cerebral palsy. According these data, there seems to be a risk attributed to infertility. An unknown genetic risk in the parents can often not be neglected.

Keywords

Assisted reproduction Malformation Health Growth Development 

Literatur

  1. 1.
    Barnes J, Sutcliffe AG, Kristoffersen I et al. (2004) The influence of assisted reproduction on family functioning and children’s socio-emotional development: results from a European study. Hum Reprod 19:1480–1487CrossRefPubMedGoogle Scholar
  2. 2.
    Basso O, Weinberg CR, Baird DD et al. (2003) Subfecundity as a correlate of preeclampsia: a study within the Danish National Birth Cohort. Am J Epidemiol 157:195–202CrossRefPubMedGoogle Scholar
  3. 3.
    Belva F, Boelaert K, Leunens L et al. (2004) Medical outcome of 8-year-old ICSI children. Hum Reprod 19 [abstract book]:i112Google Scholar
  4. 4.
    BenEzra D (2003) In vitro fertilisation and retinobalstoma. Lancet 361:273–274CrossRefPubMedGoogle Scholar
  5. 5.
    Bergh C (2005) Single embryo transfer: a mini-review. Hum Reprod 20:323–327CrossRefPubMedGoogle Scholar
  6. 6.
    Bergh T, Ericson A, Hillensjo T et al. (1999) Deliveries and children born after in-vitro fertilisation in Sweden 1982–95: a retrospective cohort study [see comments]. Lancet 354:1579–1585CrossRefPubMedGoogle Scholar
  7. 7.
    Bonduelle M, Bergh C, Niklasson A et al. (2004) Medical follow-up study of 5-year-old ICSI children. Reprod Biomed Online 9:91–101PubMedGoogle Scholar
  8. 8.
    Bonduelle M, Liebaers I, Deketelaere V et al. (2002) Neonatal data on a cohort of 2889 infants born after ICSI (1991–1999) and of 2995 infants born after IVF (1983–1999). Hum Reprod 17:671–694CrossRefPubMedGoogle Scholar
  9. 9.
    Bonduelle M, Wennerholm UB, Loft A et al. (2005) A multi-centre cohort study of the physical health of 5-year-old children conceived after intracytoplasmic sperm injection, in vitro fertilization and natural conception. Hum Reprod 20:413–419CrossRefPubMedGoogle Scholar
  10. 10.
    Bowen JR, Gibson FL, Leslie GI et al. (1998) Medical and developmental outcome at 1 year for children conceived by intracytoplasmic sperm injection. Lancet 351:1529–1534CrossRefPubMedGoogle Scholar
  11. 11.
    Bradbury BD, Jick H (2004) In vitro fertilization and childhood retinoblastoma. Br J Clin Pharmacol 58:209–211CrossRefPubMedGoogle Scholar
  12. 12.
    Brandes JM, Scher A, Itzkovits J et al. (1992) Growth and development of children conceived by in vitro fertilization. Pediatrics 90:424–429PubMedGoogle Scholar
  13. 13.
    Brinton LA, Kruger KS, Thomsen BL et al. (2004) Childhood tumor risk after treatment with ovulation-stimulating drugs. Fertil Steril 81:1083–1091CrossRefPubMedGoogle Scholar
  14. 14.
    Bruinsma F, Venn A, Lancaster P et al. (2000) Incidence of cancer in children born after in-vitro fertilization. Hum Reprod 15: 604–607CrossRefPubMedGoogle Scholar
  15. 15.
    Buck Louis GM, Schisterman EF, Dukic VM, Schieve LA (2005) Research hurdles complicating the analysis of infertility treatment and child health. Hum Reprod 20:12–18CrossRefPubMedGoogle Scholar
  16. 16.
    Chang AS, Moley KH, Wangler M et al. (2005) Association between Beckwith-Wiedemann syndrome and assisted reproductive technology: a case series of 19 patients. Fertil Steril 83:349–354CrossRefPubMedGoogle Scholar
  17. 17.
    Colpin H, Soenen S (2002) Parenting and psychosocial development of IVF children: a follow-up study. Hum Reprod 17:1116–1123CrossRefPubMedGoogle Scholar
  18. 18.
    Cook R, Bradley S, Golombok S (1998) A preliminary study of parental stress and child behaviour in families with twins conceived by in-vitro fertilization. Hum Reprod 13:3244–3246CrossRefPubMedGoogle Scholar
  19. 19.
    Cox GF, Burger J, Lip V, Mau UA et al. (2002) Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet 71:162–164CrossRefPubMedGoogle Scholar
  20. 20.
    Debaun MR, Niemitz EL, Feinberg AP (2003) Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet 72:156–160CrossRefPubMedGoogle Scholar
  21. 21.
    Doyle P, Bunch KJ, Beral V, Draper GJ (1998) Cancer incidence in children conceived with assisted reproduction technology. Lancet 352:452–453CrossRefPubMedGoogle Scholar
  22. 22.
    Edwards RG, Ludwig M (2003) Are major defects in children conceived in vitro due to innate problems in patients or to induced genetic damage? Reprod Biomed Online 7:131–138PubMedGoogle Scholar
  23. 23.
    Egozcue J, Blanco J, Vidal F (1997) Chromosome studies in human sperm nuclei using fluorescence in-situ hybridization (FISH). Hum Reprod Update 3:441–452CrossRefPubMedGoogle Scholar
  24. 24.
    Egozcue S, Blanco J, Vendrell JM et al. (2000) Human male infertility: chromosome anomalies, meiotic disorders, abnormal spermatozoa and recurrent abortion. Hum Reprod Update 6:93–105CrossRefPubMedGoogle Scholar
  25. 25.
    Ericson A, Nygren KG, Olausson PO, Kallen B (2002) Hospital care utilization of infants born after IVF. Hum Reprod 17:929–932CrossRefPubMedGoogle Scholar
  26. 26.
    Ertzeid G, Storeng R (2001) The impact of ovarian stimulation on implantation and fetal development in mice. Hum Reprod 16:221–225CrossRefPubMedGoogle Scholar
  27. 27.
    Gershoni-Baruch R, Scher A, Itskovitz J et al. (1991) The physical and psychomotor development of children conceived by IVF and exposed to high-frequency vaginal ultrasonography (6.5 MHz) in the first trimester of pregnancy. Ultrasound Obstet Gynecol 1:21–28CrossRefPubMedGoogle Scholar
  28. 28.
    Ghazi HA, Spielberger C, Kallen B (1991) Delivery outcome after infertility — a registry study. Fertil Steril 55:726–732PubMedGoogle Scholar
  29. 29.
    Gibson FL, Ungerer JA, Leslie GI, Saunders DM, Tennant CC (1998) Development, behaviour and temperament: a prospective study of infants conceived through in-vitro fertilization. Hum Reprod 13:1727–1732CrossRefPubMedGoogle Scholar
  30. 30.
    Golombok S, Brewaeys A, Cook R et al. (1996) The European study of assisted reproduction families: family functioning and child development. Hum Reprod 11:2324–2331PubMedGoogle Scholar
  31. 31.
    Golombok S, Brewaeys A, Giavazzi MT et al. (2002) The European study of assisted reproduction families: the transition to adolescence. Hum Reprod 17:830–840CrossRefPubMedGoogle Scholar
  32. 32.
    Golombok S, Cook R, Bish A, Murray C (1995) Families created by the new reproductive technologies: quality of parenting and social and emotional development of the children. Child Dev 66:285–298PubMedGoogle Scholar
  33. 33.
    Golombok S, MacCallum,F, Goodman E (2001) The „test-tube“ generation: parent-child relationships and the psychological well-being of in vitro fertilization children at adolescence. Child Dev 72:599–608CrossRefPubMedGoogle Scholar
  34. 34.
    Hansen M, Bower C, Milne E et al. (2004) Assisted reproductive technologies and the risk of birth defects — a systematic review. Hum Reprod 20:328–388CrossRefPubMedGoogle Scholar
  35. 36.
    Hansen M, Kurinczuk JJ, Bower C, Webb S (2002) The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N Engl J Med 346:725–730CrossRefPubMedGoogle Scholar
  36. 37.
    Helmerhorst FM, Perquin DA, Donker D, Keirse MJ (2004) Perinatal outcome of singletons and twins after assisted conception: a systematic review of controlled studies. BMJ 328:261CrossRefPubMedGoogle Scholar
  37. 38.
    Horsthemke B, Ludwig M (2005) Assisted reproduction — the epigenetic perspective. Hum Reprod Update (in press)Google Scholar
  38. 39.
    Jackson RA, Gibson KA, Wu YW, Croughan MS (2004) Perinatal outcomes in singletons following in vitro fertilization: a meta-analysis. Obstet Gynecol 103:551–563PubMedGoogle Scholar
  39. 40.
    Keizer M, Middelburg K, Vogel N et al. (2004) Birth weight of singletons born after modified natural cycle IVF compared with singletons born after IVF with ovarian hyperstimulation. Fertil Steril 82 [Suppl 2]:S48Google Scholar
  40. 41.
    Khosla S, Dean W, Reik W, Feil R (2001) Culture of preimplantation embryos and its long-term effects on gene expression and phenotype. Hum Reprod Update 7:419–427CrossRefPubMedGoogle Scholar
  41. 42.
    Klip H, Burger CW, de Kraker J, van Leeuwen FE (2001) Risk of cancer in the offspring of women who underwent ovarian stimulation for IVF. Hum Reprod 16:2451–2458PubMedGoogle Scholar
  42. 43.
    Koivurova S, Hartikainen AL, Sovio U et al. (2003) Growth, psychomotor development and morbidity up to 3 years of age in children born after IVF. Hum Reprod 18:2328–2336CrossRefPubMedGoogle Scholar
  43. 44.
    Kramer S, Ward E, Meadows AT (1987) Medical drug risk factors associated with neuroblastoma: a case-control study. J Natl. Cacner Inst 78:797–804Google Scholar
  44. 45.
    Kurinczuk JJ, Bower C (1997) Birth defects in infants conceived by intracytoplasmic sperm injection: an alternative interpretation [see comments]. BMJ 315:1260–1265PubMedGoogle Scholar
  45. 46.
    Lerner-Geva L, Toren A, Chetrit A et al. (2000) The risk for cancer among children of women who underwent in vitro fertilization. Cancer 88:2845–2847CrossRefPubMedGoogle Scholar
  46. 47.
    Leunens L, Celestin-Westreich S, Belva F, Bonduelle M (2004) Developmental outcome of 8-year olf ICSI children. Hum Reprod 19 [abstract book]:i112Google Scholar
  47. 48.
    Lidegaard O, Pinborg A, Andersen AN (2005) Imprinting diseases and IVF: Danish National IVF cohort study. Hum Reprod (in press)Google Scholar
  48. 49.
    Lie RT, Lyngstadaas A, Orstavik KH et al. (2004) Birth defects in children conceived by ICSI compared with children conceived by other IVF-methods; a meta-analysis. Int J EpidemiolGoogle Scholar
  49. 50.
    Ludwig M (2004) Development of children born after IVF and ICSI. Reprod Biomed Online 9:10–12PubMedGoogle Scholar
  50. 51.
    Ludwig M (2005) Is there an increased risk of malformations after assisted reproductive technologies? RBMonline 10:83–89Google Scholar
  51. 52.
    Ludwig M, Katalinic A, Groß S et al. (2005) Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples. J Med Genet 42:289–291CrossRefPubMedGoogle Scholar
  52. 53.
    Ludwig M, Schröder AK, Diedrich K (2001) Impact of intracytoplasmativ sperm injection on the activation and fertilization process of oocytes. RBM Online 3:230–240PubMedGoogle Scholar
  53. 55.
    Maher ER, Brueton LA, Bowdin SC et al. (2003) Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J Med Genet 40:62–64CrossRefPubMedGoogle Scholar
  54. 56.
    Marques CJ, Carvalho F, Sousa M, Barros A (2004) Genomic imprinting in disruptive spermatogenesis. Lancet 363:1700–1702CrossRefPubMedGoogle Scholar
  55. 57.
    Meschede D, Lemcke B, Exeler JR et al. (1998) Chromosome abnormalities in 447 couples undergoing intracytoplasmic sperm injection — prevalence, types, sex distribution and reproductive relevance. Hum Reprod 13:576–582CrossRefPubMedGoogle Scholar
  56. 58.
    Michalek AM, Buck GM, Nasca PC (1996) Gravid health status, medication use, and risk of neuroblastoma. Am J Epidemiol 143:996–1001PubMedGoogle Scholar
  57. 59.
    Mitwally MF, Abdel-Razeq SS, Suilivan M, Crickard K (2004) Estradiol production during controlled ovarian hyperstimulation correlates with the birth weight in pregnancies achieved after in vitro fertilization. Fertil Steril 84 [Suppl 2]:S50–S51Google Scholar
  58. 60.
    Moll AC, Imhof SM, Cruysberg JR et al. (2003) Incidence of retinoblastoma in children born after in-vitro fertilisation. Lancet 361:309–310CrossRefPubMedGoogle Scholar
  59. 61.
    Morin NC, Wirth FH, Johnson DH et al. (1989) Congenital malformations and psychosocial development in children conceived by in vitro fertilization. J Pediatr 115:222–227PubMedGoogle Scholar
  60. 62.
    Orstavik KH, Eiklid K, van der Hagen CB et al. (2003) Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmic semen injection. Am J Hum Genet 72:218–219CrossRefPubMedGoogle Scholar
  61. 63.
    Pandian Z, Bhattacharya S, Templeton A (2001) Review of unexplained infertility and obstetric outcome: a 10 year review. Hum Reprod 16:2593–2597CrossRefPubMedGoogle Scholar
  62. 64.
    Peschka B, Leygraaf J, Montag M et al. (1999) Type and frequency of chromosome aberrations in 781 couples undergoing intracytoplasmic sperm injection. Hum Reprod 14:2257–2263CrossRefPubMedGoogle Scholar
  63. 65.
    Pinborg A, Loft A, Schmidt L, Andersen AN (2003) Morbidity in a Danish national cohort of 472 IVF/ICSI twins, 1132 non-IVF/ICSI twins and 634 IVF/ICSI singletons: health-related and social implications for the children and their families. Hum Reprod 18:1234–1243CrossRefPubMedGoogle Scholar
  64. 66.
    Pinborg A, Loft A, Rasmussen S, Nyboe Andersen A (2004) Hospital care utilization of IVF/ICSI twins following until 2–7 years of age: a controlled Danish national cohort study. Hum Reprod 19:2529–2536CrossRefPubMedGoogle Scholar
  65. 67.
    Pinborg A, Loft A, Schmidt L et al. (2004) Neurological sequelae in twins born after assisted conception: controlled national cohort study. BMJ 329:311CrossRefPubMedGoogle Scholar
  66. 68.
    Place I, Englert Y (2003) A prospective longitudinal study of the physical, psychomotor, and intellectual development of singleton children up to 5 years who were conceived by intracytoplasmic sperm injection compared with children conceived spontaneously and by in vitro fertilization. Fertil Steril 80:1388–1397CrossRefPubMedGoogle Scholar
  67. 69.
    Ponjaert-Kristoffersen I (2003) Cognitive and neurodevelopmental outcome. Hum Reprod 18 [abstract book]:xviii97Google Scholar
  68. 70.
    Ponjaert-Kristoffersen I, Tjus T, Nekkebroeck J et al. (2004) Psychological follow-up study of 5-year-old ICSI children. Hum Reprod 19:2791–2797CrossRefPubMedGoogle Scholar
  69. 71.
    Raoul-Duval A, Bertrand-Servais M, Letur-Konirsch H, Frydman R (1994) Psychological follow-up of children born after in-vitro fertilization. Hum Reprod 9:1097–1101PubMedGoogle Scholar
  70. 72.
    Rimm AA, Katayama AC, Diaz M, Katayama KP (2004) A meta-analysis of controlled studies comparing major malformation rates in IVF and ICSI infants with naturally conceived children. J Assist Reprod Genet 21:437–443CrossRefPubMedGoogle Scholar
  71. 73.
    Roman E, Ansell P, Bull D (1997) Leukaemia and non-Hodgkin’s lymphoma in children and young adults: are prenatal and neonatal factors important determinants of disease? Br J Cancer 76:406–435PubMedGoogle Scholar
  72. 74.
    Ron-El R, Lahat E, Golan A et al. (1994) Development of children born after ovarian superovulation induced by long-acting gonadotropin-releasing hormone agonist and menotropins, and by in vitro fertilization. J Pediatr 125:734–737PubMedGoogle Scholar
  73. 75.
    Saunders K, Spensley J, Munro J, Halasz G (1996) Growth and physical outcome of children conceived by in vitro fertilization. Pediatrics 97:688–692PubMedGoogle Scholar
  74. 76.
    Scholtes MC, Behrend C, Dietzel-Dahmen J et al. (1998) Chromosomal aberrations in couples undergoing intracytoplasmic sperm injection: influence on implantation and ongoing pregnancy rates. Fertil Steril 70:933–937CrossRefPubMedGoogle Scholar
  75. 77.
    Schröder AK, Diedrich K, Ludwig M (2001) Fertilization and preimplantation development after intracytoplasmatic sperm injection. RBM Online 3:241–249PubMedGoogle Scholar
  76. 79.
    Shi W, Haaf T (2002) Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Mol Reprod Dev 63:329–334CrossRefPubMedGoogle Scholar
  77. 80.
    Steensel-Moll HA, Valkenburg HA, Vanderbroucke JP (1985) Are maternal fertility problems related to childhood leukaemia? J Epidemiol 14:555–559Google Scholar
  78. 81.
    Stouffer RL (2002) Pre-ovulatory events in the rhesus monkey follicle during ovulation induction. Reprod Biomed Online 4 [Suppl 3]:1–4Google Scholar
  79. 82.
    Stromberg B, Dahlquist G, Ericson A et al. (2002) Neurological sequelae in children born after in-vitro fertilisation: a population-based study. Lancet 359:461–465CrossRefPubMedGoogle Scholar
  80. 83.
    Sutcliffe AG (2002) IVF children, the first generation. Assisted reproduction and child development, 1st edn. Panthenon Publishing, New York LondonGoogle Scholar
  81. 84.
    Sutcliffe AG, Saunders K, McLachlan R et al. (2003) A retrospective case-control study of developmental and other outcomes in a cohort of Australian children conceived by intracytoplasmic sperm injection compared with a similar group in the United Kingdom. Fertil Steril 79:512–516CrossRefPubMedGoogle Scholar
  82. 85.
    Sutcliffe AG, Taylor B, Grudzinskas G et al. (1998) Children conceived after intracytoplasmatic sperm injection. Lancet 352:578–579CrossRefGoogle Scholar
  83. 86.
    Sutcliffe AG, Taylor B, Saunders K et al. (2001) Outcome in the second year of life after in-vitro fertilisation by intracytoplasmic sperm injection: a UK case-control study. Lancet 357:2080–2084CrossRefPubMedGoogle Scholar
  84. 87.
    Tanbo T, Dale PO, Lunde O et al. (1995) Obstetric outcome in singleton pregnancies after assisted reproduction. Obstet Gynecol 86:188–192CrossRefPubMedGoogle Scholar
  85. 88.
    Terada Y, Luetjens CM, Sutovsky P, Schatten G (2000) Atypical decondensation of the sperm nucleus, delayed replication of the male genome, and sex chromosome positioning following intracytoplasmic human sperm injection (ICSI) into golden hamster eggs: does ICSI itself introduce chromosomal anomalies? Fertil Steril 74:454–460CrossRefPubMedGoogle Scholar
  86. 89.
    Wennerholm UB, Albertsson-Wikland K, Bergh C et al. (1998) Postnatal growth and health in children born after cryopreservation as embryos. Lancet 351:1085–1090CrossRefPubMedGoogle Scholar
  87. 90.
    Williams MA, Goldman MB, Mittendorf R, Monson RR (1991) Subfertility and the risk of low birth weight. Fertil Steril 56:668–671PubMedGoogle Scholar
  88. 91.
    Young LE, Fernandes K, McEvoy TG et al. (2001) Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet 27:153–154CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2005

Authors and Affiliations

  1. 1.Klinik für Frauenheilkunde und GeburtshilfeUniversitätsklinikum Schleswig-Holstein, Campus Lübeck
  2. 2.Zentrum für Stoffwechselerkrankungen, Reproduktionsmedizin und gynäkologische EndokrinologieEndokrinologikum Hamburg
  3. 3.Klinik für Frauenheilkunde und GeburtshilfeUniversitätsklinikum Schleswig-Holstein, Campus LübeckLübeck

Personalised recommendations