Advertisement

Phytothérapie

, Volume 14, Issue 6, pp 393–397 | Cite as

Les effets antihépatotoxiques du jujubier

  • P. Goetz
  • L. Bureau
Actualités en Phytothérapie
  • 66 Downloads

Résumé

Les communautés tribales du Nord-Est de l’Inde utilisent le jujubier dans différentes affections. Des chercheurs de Guwahati (Inde) ont cherché à connaître les effets de l’écorce de racine de Zizyphus jujuba (Rhamnaceae) dans les lésions hépatiques avec inflammation chronique chez le rat. L’extrait aqueux comme l’extrait méthanolique ont un pouvoir antioxydant, en particulier vis-à-vis des cellules hépatiques HepG2 soumises au CCl4. Ils font baisser le LDH. À une dose de 50 et 100 mg/kg, ils inhibent la peroxydation lipidique qui se signale par la baisse des transaminases, du LDH et des cytokines de l’inflammation (TNF-α, Il-1β, et Il-10) dans le foie. Ces résultats ont été comparables à la silymarine, substance standard de l’intoxication hépatique. Par ailleurs, l’extrait montre un effet anti-inflammatoire dans le test de l’oedème de la patte. Dans tous les tests, l’extrait aqueux est plus efficace que l’extrait méthanolique.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Kandimalla R, Dash S, Kalita S, et al (2016) Fractions of Ziziphus jujuba Mill. root bark against hepatic injury and chronic inflammation via inhibiting inflammatory markers and oxidative stress. Front Pharmacol 7:298PubMedGoogle Scholar
  2. 1.
    Kandimalla R, Dash S, Kalita S, et al (2016) Protective effect of bioactivity guided. Front Pharmacol 7:298PubMedPubMedCentralGoogle Scholar
  3. 2.
    Mohammadifard N, Salehi-Abargouei A, Salas-Salvadó, et al (2015) The effect of tree nut, peanut, and soy nut consumption on blood pressure: a systematic review and meta-analysis of randomized controlled clinical trials. Am J Clin Nutr 101:966–82CrossRefPubMedGoogle Scholar
  4. 1.
    Waltenberger B, Liu R, Atanasov AG, et al (2015) Nonprenylated xanthones from Gentiana lutea, Frasera caroliniensis, and Centaurium erythraea as novel inhibitors of vascular smooth muscle cell proliferation. Molecules 20:20381–90CrossRefPubMedGoogle Scholar
  5. 2.
    Fan Y, Peng A, He S, et al (2013) Isogambogenic acid inhibits tumour angiogenesis by suppressing Rho GTPases and vascular endothelial growth factor receptor 2 signalling pathway. J Chemother 25:298–308CrossRefPubMedGoogle Scholar
  6. 3.
    Jittiporn K, Suwanpradid J, Patel C, et al (2014) Antiangiogenic actions of the mangosteen polyphenolic xanthone derivative a-mangostin. Microvasc Res 93:72–9CrossRefPubMedPubMedCentralGoogle Scholar
  7. 1.
    Pesavento G, Maggini V, Maida I, et al (2016) Essential oil from Origanum vulgare completely inhibits the growth of multidrug-resistant cystic fibrosis pathogens. Nat Prod Commun 11:861–4PubMedGoogle Scholar
  8. 1.
    Sahranavard S (2016) Hazelnut and neuroprotection: improved memory and hindered anxiety in response to intra-hippocampal Aß injection. Nutr Neurosci Published online: 25 Jan 2016; http://www.tandfonline.comGoogle Scholar
  9. 1.
    Tai CJ, El-Shazly M, Wu TY (2015) Clinical aspects of aconitum preparations. Planta Med 81:1017–28CrossRefPubMedGoogle Scholar
  10. 2.
    Chan TY (2014) Aconitum alkaloid poisoning related to the culinary uses of aconite roots. Toxins (Basel) 6:2605–11CrossRefGoogle Scholar
  11. 3.
    Chan TY (2015) Incidence and causes of aconitum alkaloid poisoning in Hong Kong from 1989 to 2010. Phytother Res 29:1107–11CrossRefPubMedGoogle Scholar
  12. 4.
    Chan TY (2016) Aconitum alkaloid poisoning because of contamination of herbs by aconite roots. Phytother Res 30:3–8CrossRefPubMedGoogle Scholar
  13. 5.
    Nyirimigabo E, Xu Y, Li Y, et al (2015) A review on phytochemistry, pharmacology and toxicology studies of Aconitum. J Pharm Pharmacol 67:1–19CrossRefPubMedGoogle Scholar
  14. 6.
    Wu J, Lin N, Li F, Zhang G, et al (2016) Induction of Pglycoprotein expression and activity by Aconitum alkaloids: implication for clinical drug–drug interactions. Sci Rep. 2016 May 3;6:25343CrossRefGoogle Scholar
  15. 7.
    Zhang H, Sun S, Zhang W, et al (2016) Biological activities and pharmacokinetics of aconitine, benzoylaconine, and aconine after oral administration in rats. Drug Test Anal 8:839–46CrossRefPubMedGoogle Scholar
  16. 8.
    Kiss T, Orvos P, Bánsághi S, et al (2013) Identification of diterpene alkaloids from Aconitum napellus subsp. firmum and GIRK channel activities of some Aconitum alkaloids. Fitoterapia 90:85–93PubMedGoogle Scholar
  17. 9.
    European Food Safety Authority (2012) Compendium of botanicals reported to contain naturally occuring substances of possible concern for human health when used in food and food supplements. EFSA Journal 10(5): 2663–723CrossRefGoogle Scholar
  18. 10.
    Bruneton J (2016) Pharmacognosie, phytochimie, plantes médicinales. Lavoisier Tec&Doc, 5e ed, Paris, 1487pGoogle Scholar
  19. 1.
    Fombang EN, Willy Saa R (2016) Antihyperglycemic activity of Moringa oleifera Lam leaf functional tea in rat models and human subjects. Food Nutr Sci 7:1021–32CrossRefGoogle Scholar
  20. 2.
    Nunthanawanich P, Sompong W, Sirikwanpong S, et al (2016) Moringa oleifera aqueous leaf extract inhibits reducing monosaccharide-induced protein glycation and oxidation of bovine serum albumin. Springerplus 5:1098CrossRefPubMedPubMedCentralGoogle Scholar
  21. 3.
    Sangkitikomol W, Rocejanasaroj A, Tencomnao T (2014) Effect of Moringa oleifera on advanced glycation endproduct formation and lipid metabolism gene expression in HepG2 cells. Genet Mol Res 13:723–35CrossRefPubMedGoogle Scholar

Copyright information

© Lavoisier 2016

Authors and Affiliations

  1. 1.DU de phytothérapieParis-XIIIBobigny cedexFrance
  2. 2.UFR sciences biologiques et pharmaceutiquesUniversité Rennes-IRennes CedexFrance
  3. 3.Institut de formation des acteurs de santé (IFAS)Le MansFrance

Personalised recommendations