Étude comparative de l’activité insecticide des huiles essentielles des espèces de thyms originaires du Sud-Ouest marocain

Phytothérapie Expérimentale

Résumé

Ce travail vise de comparer, pour la première fois, l’activité insecticide des huiles essentielles des espèces de thyms originaires du Sud-Ouest marocain (Thymus satureioides Coss., Thymus broussonetii Boiss., Thymus maroccanus Ball., Thymus ciliatus (Desf.) Benth., Thymus pallidus Batt., et Thymus leptobotrys Murb. L’étude de la toxicité de ces huiles essentielles a été réalisée par le test de contact sur papier-filtre. Les résultats obtenus ont montré que toutes les huiles essentielles testées ont présenté un effet insecticide important vis-à-vis des adultes de Tribolium castaneum Herbst. Toutefois, l’huile essentielle de Thymus leptobotrys (thym à carvacrol) a montré la toxicité la plus élevée, avec des valeurs de DL50 et DL90 de 0,08 et 0,19 µl/cm2, respectivement, et des valeurs de LT50 et LT90, allant de 32,80 à 17,18 heures et de 69,37 à 32,05 heures, respectivement. Ces données suggèrent que les huiles essentielles de ces thyms, particulièrement celle de Thymus leptobotrys, peuvent présenter une matière première pour le développement de nouveaux produits bio-insecticides contre Tribolium castaneum, l’un des principaux ravageurs des denrées alimentaires stockées dans l’Afrique du Nord.

Mots clés

Thymus Huiles essentielles Activité insecticide Tribolium castaneum Maroc 

Comparative study of insecticidal activities of wild thyme species essential oils originated from South Western Morocco

Abstract

The aim of this study was to compare for the first time the insecticidal activities of essential oils from different wild thyme species namely Thymus satureioides Coss., Thymus broussonetii Boiss., Thymus maroccanus Ball., Thymus ciliatus (Desf.) Benth., Thymus pallidus Batt., and Thymus leptobotrys Murb., originated from south and South Western Morocco. The insecticidal activity of essential oils isolated from Moroccan thyme was evaluated using the contact toxicity assay. The results showed that all essential oils tested presented important insecticidal activity against adults of Tribolium castaneum Herbst. While the oil extracted from Thymus leptobotrys (carvacrol-rich oil) exhibited the highest toxicity, with LD50 (lethal dose that kill 50% of the exposed insects) and LD90 (lethal dose that kill 90% of the exposed insects) values of 0.08 µl/cm2 and 0.19 µl/cm2, respectively and LT50 (lethal time required to kill 50% of the exposed insects) and LT90 (lethal time required to kill 90% of the exposed insects) values ranged from 32.80 to 17.18 h and from 69.37 to 32.05 h, respectively. The current results suggest that the contents of Moroccan thyme essential oils particularly those obtained from Thymus leptobotrys have a good potential to be used as botanical bioinsecticide against Tribolium castaneum Herbst., the most important stored pests in North Africa.

Keywords

Thymus Essential oils Insecticidal activity Tribolium castaneum Morocco 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Maksimovic Z, Stojanovic D, Sostaric I, et al (2008) Composition and radical-scavenging activity of Thymus glabrescens Willd. (Lamiaceae) essential oil. J Sci Food Agr 88:2036–41CrossRefGoogle Scholar
  2. 2.
    Bellakhdar J (2006) Medicinal plants in North Africa and basic care, handbook of modern herbal medicine. Le Fennec, Casablanca, 386 pGoogle Scholar
  3. 3.
    Fennane M, Ibn Tattou M, Ouyahya A, et al (2007) Flore pratique du Maroc. Trav Inst Sci Rabat Ser Bot 2:477–83Google Scholar
  4. 4.
    Alaoui-Jamali C, El Bouzidi L, Bekkouche K, et al (2012) Chemical composition and antioxidant and anticandidal activities of essential oils from different wild Moroccan Thymus species. Chem Biodivers 9:1188–97CrossRefGoogle Scholar
  5. 5.
    Ait M’barek L, Ait Mouse H, Jaâfari A, et al (2007) Cytotoxic effect of essential oil of thyme (Thymus broussonettii) on the IGR-OV1 tumor cells resistant to chemotherapy. Braz J Med Biol Res 40:1537–44CrossRefPubMedGoogle Scholar
  6. 6.
    Jaafari A, Ait Mouse H, Rakib E, et al (2007) Chemical composition and antitumor activity of different wild varieties of Moroccan thyme. Braz J Pharmacogn 17:477–91Google Scholar
  7. 7.
    Sqalli H, El Ouarti A, Farah A, et al (2009) Antibacterial activity of Thymus pallidus (Batt.) and determination of the chemical composition of its essential oil. Acta Bot Gall 156:303–10CrossRefGoogle Scholar
  8. 8.
    Amarti F, Satrani B, Ghanmi M, et al (2010) Composition chimique et activité antimicrobienne des huiles essentielles de Thymus algeriensis Boiss. & Reut. et Thymus ciliatus (Desf.) Benth. du Maroc. Biotechnol Agron Soc Envir 14:141–8Google Scholar
  9. 9.
    Saad A, Fadli M, Bouaziz M, et al (2010) Anticandidal activity of the essential oils of Thymus maroccanus and Thymus broussonetii and their synergism with amphotericin B and fluconazol. Phytomedicine 17:1057–60CrossRefPubMedGoogle Scholar
  10. 10.
    Fadli M, Chevalier J, Saad A, et al (2011) Essential oils from Moroccan plants as potential chemosensitisers restoring antibiotic activity in resistant Gram-negative bacteria. Int J Antimicrob Agents 38:325–30CrossRefPubMedGoogle Scholar
  11. 11.
    Bellete B, Rabérin H, Flori P, et al (2012) Antifungal effect of the essential oil of Thymus broussonetii Boiss. endogenous species of Morocco. Nat Prod Res 26:1692–6CrossRefPubMedGoogle Scholar
  12. 12.
    El Bouzidi L, Alaoui-Jamali C, Bekkouche K, et al (2013) Chemical composition, antioxidant and antimicrobial activities of essential oils obtained from wild and cultivated Moroccan Thymus species. Ind Crop Prod 43:450–6CrossRefGoogle Scholar
  13. 13.
    Kasrati A, Alaoui Jamali C, Fadli M, et al (2014) Antioxidative activity and synergistic effect of Thymus saturejoides Coss. essential oils with cefixime against selected food-borne bacteria. Ind Crop Prod 61:338–44CrossRefGoogle Scholar
  14. 14.
    Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry, 4th ed. Allured Publ, Carol Stream, IL, USAGoogle Scholar
  15. 15.
    Tapondjou AL, Adler C, Fontem DA, et al (2005) Bioactivities of cymol and essential oils of Cupressus sempervirens and Eucalyptus saligna against Sitophilus zeamais Motschulsky and Tribolium confusum du Val. J Stored Prod Res 41:91–102CrossRefGoogle Scholar
  16. 16.
    Finney DJ (1971) Probit analysis 3rd ed. Cambridge University, London, 261 pGoogle Scholar
  17. 17.
    Lee SE, Lee BH, Choi WS, et al (2001) Fumigant toxicity of volatile natural products from Korean spices and medicinal plants towards the rice weevil, Sitophilus oryzae (L.). Pest Manag Sci 57:548–53CrossRefPubMedGoogle Scholar
  18. 18.
    Hori M (2003) Repellency of essential oils against the cigarette beetle, Lasioderma serricorne (Fabricius) (Coleoptera: Anobiidae). Appl Entomol Zool 38:467–73CrossRefGoogle Scholar
  19. 19.
    Passino GS, Bazzoni E, Moretti MDL (2004) Microencapsulated essential oils active against Indian meal moth. Bol Sanid Veg Plagas 30:125–32Google Scholar
  20. 20.
    Saidj F, Rezzoug SA, Bentahar F, et al (2008) Chemical composition and insecticidal properties of Thymus numidicus (Poiret) essential oil from Algeria. J Essent Oil Bear Pl 11:397–405CrossRefGoogle Scholar
  21. 21.
    Taghizadeh A, Moharramipour S, Meshkatalsadat MH (2010) Insecticidal properties of Thymus persicus essential oil against Tribolium castaneum and Sitophilus oryzae. J Pest Sci 83:3–8CrossRefGoogle Scholar
  22. 22.
    Jarrahi A, Moharramipour S, Imani S (2012) Chemical composition and fumigant toxicity of essential oil from Thymus carmanicus against two stored product beetles. Mun Ent Zool 7:215–21Google Scholar
  23. 23.
    Ahn YJ, Lee SB, Lee HS, et al (1998) Insecticidal and acaricidal activity of carvacrol and b-thujaplicine derived from Thujopsis dolabrata var. hondai sawdust. J Chem Ecol 24:1–90CrossRefGoogle Scholar
  24. 24.
    Isman MB (2000) Plant essential oils for pest and disease management. Crop Protect 19:603–8CrossRefGoogle Scholar
  25. 25.
    Regnault-Roger C, Hamraoui B (1995) Fumigant toxic activity and reproductive inhibition induced by monoterpenes on Acanthoscelides obtectus (Say) (Coleoptera), a Bruchid of kidney bean (Phaseolus vulgaris L.). J Stored Prod Res 31:291–9CrossRefGoogle Scholar
  26. 26.
    Shaaya E, Ravid U, Paster N, et al (1990) Fumigant toxicity of essential oils against four major stored-product insects. J Chem Ecol 17:499–504CrossRefGoogle Scholar
  27. 27.
    Hummelbrunner LA, Isman MB (2001) Acute, sublethal, antifeedant and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lep., Noctuidae). J Agr Food Chem 49:715–20CrossRefGoogle Scholar
  28. 28.
    Rozman V, Kalinovic I, Korunic Z (2007) Toxicity of naturally occurring compounds of Lamiaceae and Lauraceae to three stored product insects. J Stored Prod Res 43:349–55CrossRefGoogle Scholar
  29. 29.
    Lee S, Tsao R, Peterson C, et al (1997) Insecticidal activity of monoterpenoids to western corn rootworm (Coleoptera: Chrysomelidae), two spotted spider mite (Acari: Tetranychidae) and house fly (Diptera: Muscidae). J Econ Entomol 90:883–92CrossRefPubMedGoogle Scholar
  30. 30.
    Gonzalez CA, Valencia F, Martin N, et al (2002) Silphinene sesquiterpenes as model insect antifeedants. J Chem Ecol 28:117–29CrossRefGoogle Scholar
  31. 31.
    Caglar O, Calmasur O, Aslan I, et al (2007) Insecticidal effect of essential oil of Origanum acutidens against several stored product pest. Fresenius Environ Bull 16:1395–400Google Scholar
  32. 32.
    Kordali S, Cakir A, Ozer H, et al (2008) Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresource Technol 99:8788–95CrossRefGoogle Scholar
  33. 33.
    Yeom HJ, Jae SK, Kim GH, et al (2012) Insecticidal and acetylcholine esterase inhibition activity of apiaceae plant essential oils and their constituents against adults of German cockroach (Blattella germanica). J Agr Food Chem 60:7194–203CrossRefGoogle Scholar
  34. 34.
    Abbassy MA, Abdelgalei SAM, Rabie RYA (2009) Insecticidal and synergistic effects of Majorana hortensis essential oil and some of its major constituents. Entomol Exp Appl 131:225–32CrossRefGoogle Scholar
  35. 35.
    Lee BH, Lee SE, Annis PC, et al (2002) Fumigant toxicity of essential oils and monoterpenes against the red flour beetle, Tribolium castaneum Herbst. J Asia Pacific Entomol 5:237–40CrossRefGoogle Scholar
  36. 36.
    Kim SI, Yoon JS, Jung JW, et al (2010) Toxicity and repellency of Origanum essential oil and its components against Tribolium castaneum (Coleoptera: Tenebrionidae) adults. J Asia Pacific Entomol 13:369–73CrossRefGoogle Scholar
  37. 37.
    Isman MB, Wan AJ, Passreiter CM (2001) Insecticidal activity of essential oils to the tobacco cutworm, Spodoptera litura. Fitoterapia 72:65–8CrossRefPubMedGoogle Scholar

Copyright information

© Lavoisier 2016

Authors and Affiliations

  • C. Alaoui-Jamali
    • 1
  • A. Kasrati
    • 1
  • D. Leach
    • 2
  • A. Abbad
    • 1
  1. 1.Laboratoire de biotechnologie, protection et valorisation des ressources végétalesfaculté des sciences Semlalia, université Cadi-AyyadMarrakechMaroc
  2. 2.Southern Cross Plant ScienceSouthern Cross UniversityLismoreAustralia

Personalised recommendations