, Volume 15, Issue 4, pp 211–216 | Cite as

Anti-inflammatory and analgesic activities of ethanolic extract of Fumaria capreolata

  • N. Bribi
  • M. Belmouhoub
  • F. Maiza


Fumaria capreolata is used in traditional medicine for its gastrointestinal, hepatoprotective, and antiinflammatory activities. The aim of the present study was to investigate the anti-inflammatory and the analgesic effects of the ethanolic extract of Fumaria capreolata (EFC) in mice. Anti-inflammatory activity was evaluated by using the xylene-induced ear edema and multi-application of TPA induced chronic inflammation, whereas acetic acid-induced abdominal constrictions and formalin-induced licking and biting were used to determine antinociceptive effects. The crud extract of Fumaria capreolata (500 and 250 mg/kg) produced a significant inhibition of ear edema in two models of acute and chronic inflammation, and produced a significant reduction of the number of writhes. Also, in the formalin test, EFC reduced both neurogenic and inflammatory phases. These findings suggest the aerial parts of Fumaria capreolata exhibits potent anti-inflammatory and analgesic activities on chemical behavioral models of nociception and inflammation in mice.


Anti-inflammatory Inflammation Analgesic Edema Fumaria capreolata 

Activités anti-inflammatoire et analgésique de l’extrait éthanolique de Fumaria capreolata


Fumaria capreolata est utilisée en médecine traditionnelle pour traiter les maladies inflammatoires et les affections gastro-intestinales. Dans cette étude, nous nous sommes penchés sur les possibles effets anti-inflammatoire et analgésique de l’extrait éthanolique de Fumaria capreolata (EFC) chez les souris. L’activité anti-inflammatoire a été déterminée par d’inhibition de l’oedème causé par le xylène et la multi-application de TPA. Cependant les tests de l’inhibition de la douleur provoquée par l’acide acétique et le formaldéhyde ont été utilisés pour évaluer l’action analgésique d’EFC. L’extrait éthanolique de Fumaria capreolata (500 et 250 mg/kg) a démontré une inhibition significative de l’oedème dans les deux modèles de l’inflammation aiguë et chronique. Les résultats ont montré que Fumaria capreolata a produit une réduction significative du nombre de crampes et la douleur causée par l’injection du formaldéhyde via l’inhibition des médiateurs de la douleur et de l’inflammation. Ces résultats suggèrent que l’extrait éthanolique de la partie aérienne de Fumaria capreolata possède un potentiel effet anti-inflammatoire et il présente également des effets analgésiques sur des modèles comportementaux chimiques de la douleur et de l’inflammation chez les souris.

Mots clés

Anti-inflammatoire Inflammation Analgésique OEdème Fumaria capreolata 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Guzik TJ, Korbut R, Adamek-Guzik T (2003) Nitric oxide and superoxide in inflammation and immuneregulation. J Physio Pharmaco 54:469–87Google Scholar
  2. 2.
    Yam MF, Asmawi MZ, Basir R (2008) An investigation of the anti-inflammatory and analgesic effects of Orthosiphon stamineus leaf extract. J Med Food 11:362–8CrossRefPubMedGoogle Scholar
  3. 3.
    Garcia R, Ferreira JP, Costa G, et al (2015) Evaluation of Antiinflammatory and Analgesic Activities of Cymbopogon citratus in vivo-Polyphenols Contribution. Res J Med. Plant 9: 1–13Google Scholar
  4. 4.
    Vasudevan M, Gunnam KK, Parle M (2007) Antinociceptive and antiinflammatory effects of Thespesia populnea bark extract. J Ethnopharmacol 109:264–70CrossRefPubMedGoogle Scholar
  5. 5.
    Almeida RN, Navarro DS, Barbosa-Filho JM (2001) Plants with central analgesic activity. Phytomed 8:310–22CrossRefGoogle Scholar
  6. 6.
    Elisabetsky E, Marschner J, Souza DO (1995) Effects of Linalool on glutamatergic system in the rat cerebral cortex. Neurochem Res 20:461–5CrossRefPubMedGoogle Scholar
  7. 7.
    Orhan I, Senar B, Musharraf SG (2010) Antioxidant and hepatoprotective activity appraisal of four selected Fumaria species and their total phenol and flavonoid quantities, Exp Tox Path 64:205–9CrossRefGoogle Scholar
  8. 8.
    Suau R, Cabezudo B, Rico R, et al (2002) Direct determination of alkaloid contents in Fumaria species by GC-MS, Phytochem Anal 13:363–7CrossRefPubMedGoogle Scholar
  9. 9.
    Bribi N, Y Bouguezza, F Maiza-Benabdesslam (2013) Evaluation of erythrocytes toxicity and antioxidant activity of alkaloids of Fumaria capreolata, Inter J Pharma and Bio Sciences 4:770–6Google Scholar
  10. 10.
    Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–10CrossRefPubMedGoogle Scholar
  11. 11.
    Akindele GA and Adeyemi OO (2007) Antiinflammatory activity of the aqueous extract of Byrsocarpus coccineus. Fitote 78:25–8CrossRefGoogle Scholar
  12. 12.
    Nunez-Guillen ME, Emim JA, Souccar C, et al (1997) Analgesic and anti-inflammatory activities of the aqueous extract of Plantago major L. Int J pharm 35:99–104CrossRefGoogle Scholar
  13. 13.
    Stanley PL, Steiner S, Havens M, et al (1991) Mouse skin inflammation induced by multiple topical applications of 12- O-tetradecanoylphorbol 13-acetate. Skin Pharmacol 4:262–471CrossRefPubMedGoogle Scholar
  14. 14.
    Koster R, Anderson M, De Beer EJ (1959) Acetic acid for analgesic screening. Fed Proc 18: 412–6Google Scholar
  15. 15.
    Hunskaar S, K. Hole K (1987) The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30:103–14CrossRefPubMedGoogle Scholar
  16. 16.
    Tjolsen A, Berge OG, Hunskaar S et al (1992) The formalin test: an evaluation of the method. Pain 51:5–17CrossRefPubMedGoogle Scholar
  17. 17.
    Zaninir JC, Medeiro YS, Cruz AB, et al (1992) Action of compounds from Mandevilla velutina on croton oil induced ear oedema in mice: a comparative study with steroidal and nonsteroidal anti-inflammatory drugs. Phytoth Res 6:1–5CrossRefGoogle Scholar
  18. 18.
    Baxter CS, Chalfin K, Andringa A, et al (1988) Qualitative and quantitative effects on epidermal Langerhans (Ia+) and (Thy-1+) dendritic cells following topical application of phorbol diesters and mezerein. Carcinog 9:1563–8CrossRefGoogle Scholar
  19. 19.
    Murakawa M, Yamaoka K, Tanaka Y, et al (2006). Involvement of tumor necrosis factor (TNF)-a in phorbol ester 12-Otetradecanoylphorbol- 13-acetate (TPA)-induced skin edema in mice. Biochem Pharma 71: 1331–6CrossRefGoogle Scholar
  20. 20.
    Raj PP (1996) Pain mechanism. In: Pain medicine: A comprehensive Review, Mosby-Year Book, St. Luis Mo, USA, 1st edition. 12–23Google Scholar
  21. 21.
    Figueiredo SM, Zardo RS, Silva BV, et al (2013) Convolutamydine A and synthetic analogues have antinociceptive properties in mice. Pharm Bioch Behavior 103:431–9CrossRefGoogle Scholar
  22. 22.
    Collier HO, Dinneen JC, Johnson CA, et al (1968) The abdominal constriction response and its suppression by analgesic drugs in the mouse. Br J Pharmacol Chemother 32:295–310CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Shibata M, Ohkubo T, Takahaski H, et al (1989) Modified formalin test characteristic biphasic pain response. Pain 38:347–52CrossRefPubMedGoogle Scholar
  24. 24.
    Leal LK, Frreira AA, Bezerra GA, et al (2000) Antinociceptive, anti-inflammatory and bronchodilator activities of Brazilian medicinal plants containing coumarin: a comparative study. J Ethnopharmacol 70:151–9CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag France 2016

Authors and Affiliations

  1. 1.Laboratoire de biotechnologies végétales et ethnobotanique, Faculté des sciences de la nature et de la vieUniversité de BejaiaBejaiaAlgeria

Personalised recommendations