Advertisement

Phytothérapie

, Volume 14, Issue 1, pp 44–57 | Cite as

Huiles essentielles et composés organiques volatils, rôles et intérêts

  • N. Soualeh
  • R. Soulimani
Aromathérapie Expérimentale
  • 340 Downloads

Résumé

Les huiles essentielles sont extraites des plantes aromatiques et essentielles et utilisées depuis des millénaires pour plusieurs applications. Elles sont réputées pour leurs propriétés thérapeutiques, en particulier anti-infectieuses, souvent sous forme de produits non médicamenteux. Comme ce sont des composés volatils, elles jouent également un important rôle dans la défense des plantes et des forêts contre les agressions naturelles, mais aussi pour lutter contre la sécheresse en contribuant à la pluviosité.

Leurs composés, de par leurs caractéristiques physicochimiques, sont appelés composés organiques volatils (COV). Ce terme parfois utilisé également pour décrire d’autres composés volatils mais issus proprement de l’activité humaine et qui sont volatiles à température ambiante. Ces derniers COV comprennent du carbone, mais considérés comme des polluants, tels que les dérivés de la pétrochimie notamment.

Les terpènes, substances et molécules volatiles bioactives extraites des huiles essentielles sont utilisées pour leurs propriétés thérapeutiques. Ces substances sont aussi émises à des taux pouvant influencer la composition chimique de l’atmosphère. Il convient ainsi, comme pour toute substance bioactive et thérapeutique, de tenir compte de la tolérance par l’homme de ces substances naturelles, très bien étudiée et référencée dans plus de 1800 articles. Par ailleurs, pour les effets pharmacologiques plus de 2 000 publications depuis 1995 ont été consacrées aux propriétés des terpènes telles que les propriétés anti-inflammatoires, décongestionnantes, antiseptiques, antivirales, antifongiques, anti-parasitaires, mucolytiques, cholagogues, cicatrisantes. Ces effets biologiques des huiles essentielles ont été validés par de nombreuses études scientifiques selon des méthodologies fiables comme sont bien documentées également les données de toxicité et de tolérance.

Leur utilisation dans des espaces clos et domestiques, surtout à dose mesurée, serait d’un grand intérêt en particulier par leurs effets antimicrobiens (bactéricides et fongicides), virucides, et acaricides pour certaines

Dans l’état actuel des connaissances scientifiques, le rapport bénéfice/risque serait plus en faveur de leur emploi avec une bonne maitrise des recommandations des doses émises dans l’environnement.

Il convient donc de bien savoir différencier ces différentes sources de COV afin d’éviter la confusion entre les effets naturels des COV issus de l’activité de la Nature (COV NAT) et les risques des COV issus de l’activité anthropique (COV de Synthèse).

Mots clés

Huiles essentielles Plantes aromatiques Composés organiques volatils Terpènes Bénéfice/risque 

Plant essential oils and volatile organic compounds: roles and interests

Abstract

The essential oils from aromatic plants are extracted from the plant world and used for thousands of years for their therapeutic properties, particularly anti infectious, often in the form of non-medicinal products. They play a significant role in plant defense and forest against natural aggression, including the fight against drought.

Their compounds, due to their physico-chemical characteristics are called volatile organic compounds (VOCs). This term is sometimes also used to describe other compounds, volatile at room temperature and carbon-based, but due to human activity and considered as pollutants, such as petrochemical derivatives in particular.

Terpenes, active substances found in essential oils and used for their therapeutic properties are issued at rates that can influence the chemical composition of the atmosphere. It is therefore necessary, as with any treatment, to take into account the tolerance of these natural substances, well studied in more than 1800 items. More than 2000 publications since 1995 have been devoted to pharmacology terpenes: it is mentioned in this study, these anti-inflammatory, decongestant, antiseptic, antiviral, antifungal, anti-parasitic, mucolytics, bile ducts, healing. Biological effects of essential oils are validated by many reliable and serious studies, as also are well documented data of toxicity and tolerance.

Their use in confined spaces and domestic, particularly in low doses, would be of great interest especially for their antimicrobial effects, namely virucidal, bactericidal and fungicidal.

In the current state of scientific knowledge, the benefit/risk ratio would be more in favor of their use with a good command of the recommendations of doses emitted into the environment.

Keywords

Essential oils Aromatic plants Volatile organic compounds Terpens Benefit/risk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Can Baser Hüsnü K, Gerhard B (2010) Handbook of essential oils, sciences, technology and applications, 39p.Google Scholar
  2. 2.
    Lindfors V, Laurila T (2000) Biogenic volatile organic compound (VOC) emissions from forests in Finland. Boreal Environment Research 5: 95–113Google Scholar
  3. 3.
    Abdullahi ME (2013) A Synopsis on Biogenic and Anthropogenic Volatile Organic Compounds Emissions: Hazards and Control. Internat J Engineer Sci 2(5):145–53Google Scholar
  4. 4.
    Guenther A, Hewitt CN, Erickson D, et al (1995) Global-Model of Natural Volatile Organic-Compound Emissions. J Geophys. Res- Atmos 100(D5): 8873–92CrossRefGoogle Scholar
  5. 5.
    Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmospher Chemistr 33: 23–88.CrossRefGoogle Scholar
  6. 6.
    Fuentes JD, Lerdau M, Atkinson R, et al (2000) Biogenic hydrocarbons in the atmospheric boundary layer: A review. Bull Am Meteorol Soc 81(7):1537–75CrossRefGoogle Scholar
  7. 7.
    Finlayson-Pitts B J, Pitts JNJ (2000) Chemistry of the upper and lower atmosphere — Theory, experiments and applications, San DiegoGoogle Scholar
  8. 8.
    Wink M (2010) Annual Plant Reviews Volume 40: Biochemistry of Plant Secondary Metabolism, Second Edition, Blackwell Publishing 7 pCrossRefGoogle Scholar
  9. 9.
    Charlwood BV, Banthorpe DV (1991) Methods in Plant Biochemistry, Vol. 7: Terpenoids. Academic, LondonGoogle Scholar
  10. 10.
    Swanson KM, Hohl RJ (2006) Anti-Cancer Therapy: Targeting the Mevalonate Pathway. Curr Cancer Drug Targets 6(1): 15–37(23)PubMedCrossRefGoogle Scholar
  11. 11.
  12. 12.
    Allen KG, Banthorpe DV, Charlwood BV, et al (1977) Biosynthesis of artemisia ketone in higher plants. Phytochemistry 16:79–83CrossRefGoogle Scholar
  13. 13.
    Guenther A, Karl T, Harley P, et al (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospher Chemistr Phys 6(11):3181–3210CrossRefGoogle Scholar
  14. 14.
    Helmig D, Klinger LF, Guenther A, et al (1999) In the US Chemosphere 38:2163–87PubMedCrossRefGoogle Scholar
  15. 15.
    Christelle M, Georges L (2011) Les monoterpènes: sources et implications dans la qualité de l’air intérieur. Biotechnol Agron Soc Environ 15 (4: 611–22Google Scholar
  16. 16.
    Nardin Tavares JP (2012) Interaction between vegetation and the atmosphere in cloud and rain formation in the Amazon: A review. Estudos avançados 26(74)Google Scholar
  17. 17.
    Peñuelas J, Asensio D, Tholl D, et al (2014) Biogenic volatile emissions from the soil. Plant, Cell and EnvironmentGoogle Scholar
  18. 18.
    Font, X, Artola A, Sanchez A (2011) Detection, Composition and Treatment of Volatile Organic Compounds from Waste Treatment Plants. Sensors 11:4043–59PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Glasson WA, Tuesday CS (1970).The atmospheric thermal oxidation of nitric oxide in the presence of dienes. Environmen Sci Technol 4(9):752–7CrossRefGoogle Scholar
  20. 20.
    Goldstein AH, Galbally EI (2007) Known and unexplored organic constituents in the earth’s atmosphere. Environmen Sci Technol 41:1514–21CrossRefGoogle Scholar
  21. 21.
    Goldstein AH, McKay M, Kurpius MR, et al (2004) Forest thinning experiment confirms ozone deposition to forest canopy is dominated by reaction with biogenic VOCs. Geophys Reas Lett 31(L222106)Google Scholar
  22. 22.
    Griffin R, Cocker DR, Flagan RC, et al (1999) Organic aerosol formation from the oxidation of biogenic hydrocarbons. J Geophys Res 104: 3555–67CrossRefGoogle Scholar
  23. 23.
    Guo Y, Jia Y, Pan X, et al (2009) The association between fine particulate air pollution and hospital emergency room visits for cardiovascular diseases in Beijing, China. Sci Total Environ 407:4826–30PubMedCrossRefGoogle Scholar
  24. 24.
    Guo H, Wang T, Simpson IJ, et al (2004) Source contributions to ambient VOCs and CO at a rural site in eastern China. Atmospher Environm 38:4551–60CrossRefGoogle Scholar
  25. 25.
    Rohr AC (2013) the health significance of gas- and particle-phase terpene oxidation products: A review. Environm Internat 60: 145–62CrossRefGoogle Scholar
  26. 26.
    Aouni M, Pelen F, Soulimani R (2013) Étude de l’activité antimicrobienne d’un mélange de 41 huiles essentielles et domaines d’application. Phytothérapie 4:225–36CrossRefGoogle Scholar
  27. 27.
    Astani A, Schnitzler P (2014) Antiviral activity of monoterpenes beta-pinene and limonene against herpes simplex virus in vitro. Iran J Microbiol 6(3):149–55PubMedCentralPubMedGoogle Scholar
  28. 28.
    Kaloustian J, Hadji-Minaglou F (2013) La connaissance des huiles essentielles: qualitologie et aromathérapie: Entre science et tradition pour une application médicale raisonnéeGoogle Scholar
  29. 29.
    Meuret M (2014) La gale, aromathérapie d’une ectoparasitose de l’Homme. Phytothérapie 12:248–51CrossRefGoogle Scholar
  30. 30.
    Cavanagh HM, Wilkinson JM (2002) Biological activities of lavender essential oil. Phytother Res 16(4):301–8PubMedCrossRefGoogle Scholar
  31. 31.
    Babulka K (2007) Plantes médicinales du traitement des pathologies rhumatismales: de la médecine traditionnelle à la phytothérapie moderne. Phytothérapie 5: 137–45CrossRefGoogle Scholar
  32. 32.
    Rakesh K, Nishat A, Tripathi YC (2015) Phytochemistry and pharmacology of santalum album l. a review. W J Pharmaceut Res10:1842–76Google Scholar
  33. 33.
    Sindhu RK, Ashok K, Sahil A (2010) Santalum album linn: a review on morphology, phytochemistry and pharmacological aspects. Int J PharmTech Res 2(1).Google Scholar
  34. 34.
    Burdock GA, Carabin IG (2008) Safety assessment of sandalwood oil (Santalum album L.). Food Chem Toxicol 46(2):421–32PubMedCrossRefGoogle Scholar
  35. 35.
    Jean-Michel L, Tatjana S (2005) Variation of Chemical Composition of the Lipophilic Extracts from Yellow Birch (Betula alleghaniensis) Foliage. J Agric Food Chem 53(12):4747–56CrossRefGoogle Scholar
  36. 36.
    Webster D, Taschereau P, Belland RJ, et al (2008) Antifungal activity of medicinal plant extracts; preliminary screening studies. J Ethnopharmacol 1:140–6CrossRefGoogle Scholar
  37. 37.
    Wei-Rui L, Wen-Lin Q, Zi-Zhen L, et al (2013) Gaultheria: Phytochemical and Pharmacological Characteristics. Molecules 18(10):12071–108CrossRefGoogle Scholar
  38. 38.
    Souravh B, Naresh SG, Nitan R, et al (2014) A Phytopharmacological Review on a Medicinal Plant: Juniperus communis. International Scholarly Research Notices, Article ID 634723Google Scholar
  39. 39.
    Cabral C, Francisco V, Cavaleiro C, et al (2012) Essential oil of Juniperus communis subsp. alpina (Suter) Celak needles: chemical composition, antifungal activity and cytotoxicity. Phytother Res 26(9):1352–7PubMedCrossRefGoogle Scholar
  40. 40.
    Mittal M, Gupta N, Parashar P, et al (2014) Phytochemical evaluation and pharmacological activity of syzygium aromaticum: a comprehensive review. Internat J Pharm Pharmaceut Sci 6:8:67Google Scholar
  41. 41.
    Rajasekhar CH, Kokila BN, Rakesh, et al (2014) Potentiating effect of vetiveria zizanioides root extract and essential oil on phenobarbital induced sedation-hypnosis in swiss albino mice. Internat J Experiment Pharmacol 4:89–93Google Scholar
  42. 42.
    Luqman S, Kumar R, Kaushik S, et al (2009) Antioxidant potential of the root of Vetiveria zizanioides (L.) Nash. Ind J Biochem Biophys 46(1):122–5Google Scholar
  43. 43.
    Bharat B, Sharma SK, Singh T, et al (2013) Vetiveria zizanioides (linn.) Nash: a pharmacological overview. Internat Res Pharm DOI:  10.7897/2230-8407.04704 Google Scholar
  44. 44.
    Elizabeth AA (2012) Evaluation of analgesic and anti-inflammatory effect of Vetiveria zizanioides. J Pharmaceut Biomed Sci 25(25):164–70Google Scholar
  45. 45.
    Sampaio LF, Maia JG, Parijós AM, et al (2012) Linalool from rosewood (Aniba rosaeodora Ducke) oil inhibits adenylate cyclase in the retina, contributing to understanding its biological activity. Phytother Res 26(1):73–7CrossRefGoogle Scholar
  46. 46.
    Radulovic NS, Stojkovic MB, Mitic SS, et al (2012) Exploitation of the antioxidant potential of Geranium macrorrhizum (Geraniaceae): hepatoprotective and antimicrobial activities. Nat Prod Commun 7(12):1609–14PubMedGoogle Scholar
  47. 47.
    Stephen H, Maria LB (2002) Chapter 12. Pharmacology of Pelargonium essential oils and extracts in vitro and in vivo Geranium and Pelargonium. History of Nomenclature, Usage and Cultivation. eBook ISBN: 978-0-203-21653-8, 116–131Google Scholar
  48. 48.
    Mirandeli BÁ, Juan Antonio GL, Va M N, et al (2013) Geranium Species as Antioxidants. Oxidative Stress and Chronic Degenerative Diseases — A Role for AntioxidantsGoogle Scholar
  49. 49.
    Speroni E, Cervellati R, Dall’Acqua S, et al (2011) Gastroprotective effect and antioxidant properties of different Laurus nobilis L. leaf extracts. J Med Food 14(5):499–504PubMedCrossRefGoogle Scholar
  50. 50.
    Ramling P, Meera M, Priyanka P (2012) Phytochemical and Pharmacological Review on Laurus Nobilis. Internat J Pharmaceut Chem Sci 1(2): 2277–5005Google Scholar
  51. 51.
    Cavanagh HM, Wilkinson JM (2002) Biological activities of lavender essential oil. Phytother Res 16(4):301–8PubMedCrossRefGoogle Scholar
  52. 52.
    Al-Howiriny T, Alsheikh A, Alqasoumi S, et al (2009) Protective Effect of Origanum majorana L. ‘Marjoram’ on various models of gastric mucosal injury in rats. Am J Chin Med 37(3):531–45PubMedCrossRefGoogle Scholar
  53. 53.
    Elkomy AA, Elsayed MA, Nehal Abd El-Mageed M (2014) Pharmacodynamics effects of origanum majorana on isolated smooth muscles. Benha Veterinary Med J 2:430–6Google Scholar
  54. 54.
    Samy A, Selim, Mohamed H, Aziz A, et al (2013) Antibacterial activities, chemical constitutes and acute toxicity of Egyptian Origanum majorana L., Peganum harmala L. and Salvia officinalis L. essential oils. Afr J Pharm Pharmacol 7(13):725–35Google Scholar
  55. 55.
    Mani BR, Badal D, Badal P, et al (2011) Pharmacological Action of Mentha piperita on Lipid Profile in Fructose-Fed Rats. Iran J Pharm Res 10(4):843–8Google Scholar
  56. 56.
    Meenatchisundaram S, Parameswari G, Diana S, et al (2009) Pharmacological Activities of Mentha piperita. Ethnobotanical Leaflets 13: 213–4Google Scholar
  57. 57.
    Abhishek M, Reena P, Deepika M, et al (2011) Pharmacological investigation of methanol extract of Mentha piperita L. roots on the basis of antimicrobial, antioxidant and anti-inflammatory properties. Pelagia Research LibraryGoogle Scholar
  58. 58.
    Moharram FA, Marzouk MS, El-Toumy SA, et al (2003) Polyphenols of Melaleuca quinquenervia leaves: pharmacological studies of grandinin. Phytother Res 17(7):767–73PubMedCrossRefGoogle Scholar
  59. 59.
    Katiki LM, Chagas AC, Bizzo HR, et al (2011) Anthelmintic activity of Cymbopogon martinii, Cymbopogon schoenanthus and Mentha piperita essential oils evaluated in four different in vitro tests. Vet Parasitol 183(1–2):103–8CrossRefGoogle Scholar
  60. 60.
    Kumaran M, D’Souza P, Agarwal A, et al (2003) Geraniol, the putative anthelmintic principle of Cymbopogon martinii. Phytother Res 17(8):957PubMedCrossRefGoogle Scholar
  61. 61.
    Murbach T, Andrade BF, Conti BJ, et al (2014) Cymbopogon martinii essential oil and geraniol at noncytotoxic concentrations exerted immunomodulatory/anti-inflammatory effects in human monocytes. J Pharm Pharmacol 66(10):1491–6CrossRefGoogle Scholar
  62. 62.
    Prashar A, Hili P, Veness RG, et al (2003) Antimicrobial action of palmarosa oil (Cymbopogon martinii) on Saccharomyces cerevisiae. Phytochemistry 63(5):569–75PubMedCrossRefGoogle Scholar
  63. 63.
    Lis-Balchin M, Hart SL, Deans SG (2000) Pharmacological and antimicrobial studies on different tea-tree oils (Melaleuca alternifolia, Leptospermum scoparium or Manuka and Kunzea ericoides or Kanuka), originating in Australia and New Zealand. Phytother Res 14(8):623–9PubMedCrossRefGoogle Scholar
  64. 64.
    Hammer KA, Carson CF, Riley TV (2003) Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J Appl Microbiol 95(4):853–60PubMedCrossRefGoogle Scholar
  65. 65.
    Grigore A, Paraschiv INA, Colceru-Mihul S, et al (2010) Chemical composition and antioxidant activity of Thymus vulgaris L. volatile oil obtained by two different methods. Romanian Biotechnol Lett 15(4)Google Scholar
  66. 66.
    Marino M, Bersani C, Comi G (1999) Antimicrobial activity of the essential oils of Thymus vulgaris L. measured using a bioimpedometric method. J Food Prot 62(9):1017–23PubMedGoogle Scholar
  67. 67.
    Fachini-Queiroz FC, Raquel K, Estevão-Silva FC, et al (2012) Effects of Thymol and Carvacrol, Constituents of Thymus vulgaris L. Essential Oil, on the Inflammatory Response. Evidence-Based Complementary and Alternative Medicine, Article ID 657026, 10 pGoogle Scholar
  68. 68.
    Rahman MM, Lopa SS, Sadik G, et al (2005) Antibacterial and cytotoxic compounds from the bark of Cananga odorata. Fitoterapia 76(7–8):758–61PubMedCrossRefGoogle Scholar
  69. 69.
    Matsumoto T, Nakamura S, Nakashima S, et al (2014) Lignan dicarboxylates and terpenoids from the flower buds of Cananga odorata and their inhibitory effects on melanogenesis. J Nat Prod 25:77(4):990–9PubMedCrossRefGoogle Scholar
  70. 70.
    Maniyar YA, Janaki Devi CH (2015) Evaluation of anti-inflammatory activity of ethanolic extract of Cananga odorata Lam in experimental animals. Int J Basic Clin Pharmacol 4(2): 354–7Google Scholar
  71. 71.
    Loh THT, Learn HL, Wai FY, et al (2015) Traditional Uses, Phytochemistry, and Bioactivities of Cananga odorata (Ylang-Ylang). Evidence-Based Complementary and Alternative Medicine, Article ID 896314, 30 pGoogle Scholar
  72. 72.
    Emile MG, Robert R, Jean PB (1986) Composition of the essential oil of Ylang-Ylang (Cananga odorata Hook Fil. et Thomson forma genuina) from Madagascar. J Agric Food Chem 34(3):481–7CrossRefGoogle Scholar
  73. 73.
    Jayaprakasha GK, Rao LJ (2011) Chemistry, biogenesis, and biological activities of Cinnamomum zeylanicum. Crit Rev Food Sci Nutr 51(6):547–62PubMedCrossRefGoogle Scholar
  74. 74.
    Das M, Mandal S, Mallick B, et al (2013) Ethnobotany, phytochemical and pharmacological aspects of cinnamomum zeylanicum blume. Internat Res J Pharm 4:4CrossRefGoogle Scholar
  75. 75.
    Pooja A, Dinesh KS (2014) A review on the pharmacological aspects of Carum carvi. J Biol Earth Sci 4(1):M1–M13Google Scholar
  76. 76.
    Johri RK (2011) Cuminum cyminum and Carum carvi: An update. Pharmacogn Rev 5(9): 63–72PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Santos PL, Araújo AAS, Quintans JSS, et al (2015) Preparation, Characterization, and Pharmacological Activity of Cymbopogon winterianus Jowitt ex Bor (Poaceae) Leaf Essential Oil of β- Cyclodextrin Inclusion Complexes. Evidence-Based Complementary and Alternative Medicine. Article ID 502454, 12 pGoogle Scholar
  78. 78.
    Leite BL, Bonfim RR, Antoniolli AR, et al (2010) Assessment of antinociceptive, anti-inflammatory and antioxidant properties of Cymbopogon winterianus leaf essential oil. Pharm Biol 48(10):1164–9PubMedCrossRefGoogle Scholar
  79. 79.
    Cimanga K, Kambu K, Tona L, et al (2002) Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. J Ethnopharmacol 79(2):213–20PubMedCrossRefGoogle Scholar
  80. 80.
    Aguiar RW, Ootani MA, Ascencio SD, et al (2014) Fumigant antifungal activity of Corymbia citriodora and Cymbopogon nardus essential oils and citronellal against three fungal species. Scientif W J doi:  10.1155/2014/492138 Google Scholar
  81. 81.
    Ramezani H (2006) Fungicidal activity of volatile oil from eucalyptus Citriodora Hook. against Alternaria triticina. Commun Agric Appl Biol Sci 71(3 Pt B):909–14PubMedGoogle Scholar
  82. 82.
    Leite JR, Seabra L, Maluf E, et al (1986) Pharmacology of lemongrass (Cymbopogon citratus Stapf): Assessment of eventual toxic, hypnotic and anxiolytic effects on humans. J Ethnopharmacol 17(1):75–83PubMedCrossRefGoogle Scholar
  83. 83.
    Zhang SY, Guo Q, Gao XL, et al (2014) A phytochemical and pharmacological advance on medicinal plant Litsea cubeba (Lauraceae) Zhongguo Zhong Yao Za Zhi 39(5):769–76PubMedGoogle Scholar
  84. 84.
    Alipour G, Dashti S, Hosseinzadeh H (2014) Review of pharmacological effects of Myrtus communis L. and its active constituents. Phytother Res 28(8):1125–36PubMedCrossRefGoogle Scholar
  85. 85.
    Rojas J, Palacios O, Ronceros S (2012) The effect of the essential oil from Aloysia triphylla britton (lemon verbena) on Trypanosoma cruzi in mice. Rev Peru Med Exp Salud Publica 29(1):61–8PubMedCrossRefGoogle Scholar
  86. 86.
    Parodi TV, Cunha MA, Becker AG, et al (2014) Anesthetic activity of the essential oil of Aloysia triphylla and effectiveness in reducing stress during transport of albino and gray strains of silver catfish, Rhamdia quelen. Fish Physiol Biochem 40(2):323–34PubMedCrossRefGoogle Scholar
  87. 87.
    Oliva ML, Carezzano ME, Gallucci MN, et al (2011) Antimycotic effect of the essential oil of Aloysia triphylla against Candida species obtained from human pathologies. Nat Prod Commun 6(7):1039–43Google Scholar
  88. 88.
    Ponce-Monter H, Fernández-Martínez E, Ortiz MI, et al (2010) Spasmolytic and anti-inflammatory effects of Aloysia triphylla and citral, in vitro and in vivo studies. J Smooth Muscle Res 46(6):309–19PubMedCrossRefGoogle Scholar
  89. 89.
    Kamel M, Nidhal S, Olfa B, et al (2015) Chemical Composition and Antioxidant and Antimicrobial Activities of Wormwood (Artemisia absinthium L.) Essential Oils and Phenolics. JChemistr Article ID 804658, 12 pGoogle Scholar
  90. 90.
    Bora KS, Sharma, A (2010) Phytochemical and pharmacological potential of Artemisia absinthium Linn. and Artemisia asiatica Nakai: A Review. J Pharm Res 2:325Google Scholar
  91. 91.
    Jirí, Bohumil P (2003) Pharmacology and toxicology of absinthe. JAppl Biomed 1:199–205Google Scholar
  92. 92.
    Militello M, Settanni L, Aleo A, et al (2011) Chemical composition and antibacterial potential of Artemisia arborescens L. essential oil. Curr Microbiol 62(4):1274–81PubMedCrossRefGoogle Scholar
  93. 93.
    Ornano L, Venditti A, Ballero M, et al (2013) Chemopreventive and antioxidant activity of the chamazulene-rich essential oil obtained from Artemisia arborescens L. growing on the Isle of La Maddalena, Sardinia, Italy. Chem Biodivers 10(8):1464–74PubMedCrossRefGoogle Scholar
  94. 94.
    Sumeet G, Anu W, Rajat M (2011) Phytochemistry and pharmacology of cedrus deodera: an overview. IJPSR, Vol. 2(8): 2010–20Google Scholar
  95. 95.
    Zeng WC, Zhang Z, Gao H, et al (2012) Chemical composition, antioxidant, and antimicrobial activities of essential oil from pine needle (Cedrus deodara). J Food Sci 77(7):C824–9PubMedCrossRefGoogle Scholar
  96. 96.
    Vishin AP, Sachin AN (2014) A Review On Eucalyptus Globulus: A Divine Medicinal Herb.W J Pharm Pharmaceut Sci 6:559–67Google Scholar
  97. 97.
    Hardel DK, Sahoo L (2012) A review on phytochemical and pharmacological of eucalyptus globulus: a multipurpose tree. Internat J Res Ayurveda Pharm 5:1527Google Scholar
  98. 98.
    Daniel AV, Ana PO, Lígia S, et al (2013) Helichrysum italicum: from traditional use to scientific data. J Ethnopharmacol DOI: http://dx.doi.org/10.1016Google Scholar
  99. 99.
    Sala A, Recio M, Giner RM, et al (2002) Anti-inflammatory and antioxidant properties of Helichrysum italicum. J Pharm Pharmacol 54(3):365–71PubMedCrossRefGoogle Scholar
  100. 100.
    Lu M, Battinelli L, Daniele C, et al (2002) Muscle relaxing activity of Hyssopus officinalis essential oil on isolated intestinal preparations. Planta Med 68(3):213–6PubMedCrossRefGoogle Scholar
  101. 101.
    Kirmizibekmez H, Demirci B, Yesilada E, et al (2009) Chemical composition and antimicrobial activity of the essential oils of Lavandula stoechas L. ssp. stoechas growing wild in Turkey.Nat Prod Commun., 4(7):1001–6PubMedGoogle Scholar
  102. 102.
    Benabdelkader T, Zitouni A, Guitton Y, et al (2011) Essential oils from wild populations of Algerian Lavandula stoechas L.: composition, chemical variability, and in vitro biological properties. Chem Biodivers 8(5):937–53PubMedCrossRefGoogle Scholar
  103. 103.
    Gören A, Topçu G, Bilsel G, et al (2002) The chemical constituents and biological activity of essential oil of Lavandula stoechas ssp. stoechas. Z Naturforsch C 57(9–10):797–800PubMedGoogle Scholar
  104. 104.
    Sebai H, Selmi S, Rtibi K, et al (2013) Lavender (Lavandula stoechas L.) essential oils attenuate hyperglycemia and protect against oxidative stress in alloxan-induced diabetic rats. Lipids Health Dis, 28;12:189CrossRefGoogle Scholar
  105. 105.
    Soares PM, Assreuy AM, Souza EP, et al (2005) Inhibitory effects of the essential oil of Mentha pulegium on the isolated rat myometrium. Planta Med 71(3):214–8PubMedCrossRefGoogle Scholar
  106. 106.
    Gadir Suad A, Ahmed, Ibtisam M (2014) Commiphora myrrha and commiphora Africana essential oils. J Chem Pharmaceut Res 7:151Google Scholar
  107. 107.
    Itmad AE, Nisreen MO (2014) New Chemotype Rosmarinus officinalis L. (Rosemary) “R. officinalis ct. bornyl acetate”. Am J Res Communic 2(4):232Google Scholar
  108. 108.
    Babar A, Naser A, Saiba S, et al (2015) Essential oils used in aromatherapy: A systemic review. J Tradit Complement Med 4(2): 82–8Google Scholar
  109. 109.
    Mohsen H, Rafie H, Soheila H, et al (2014) Chemistry, Pharmacology, and Medicinal Property of Sage (Salvia) to Prevent and Cure Illnesses such as Obesity, Diabetes, Depression, Dementia, Lupus, Autism, Heart Disease, and Cancer. J Tradit Complement Med 4(2): 82–8CrossRefGoogle Scholar
  110. 110.
    Mohsen H, Rafie H, Soheila H, et al (2014) Chemistry, Pharmacology, and Medicinal Property of Sage (Salvia) to Prevent and Cure Illnesses such as Obesity, Diabetes, Depression, Dementia, Lupus, Autism, Heart Disease, and Cancer. J Tradit Complement Med 4(2): 82–8CrossRefGoogle Scholar
  111. 111.
    Zhiming F, Hang W, Xiaofei H, et al (2013) The Pharmacological Properties of Salvia Essential Oils. J Appl Pharmaceut Sci 3:122–7Google Scholar
  112. 112.
    Mehta D (2012) Salvia officinalis Linn.: Relevance to Modern Research Drive. Planta Activa 4Google Scholar
  113. 113.
    Belal N, Cornelia B, Martin T, et al (2013) Thuja occidentalis (Arbor vitae): A Review of its Pharmaceutical, Pharmacological and Clinical Properties. Evid Based Compl Alternat Med 2:69–78Google Scholar
  114. 114.
    Fraternale D, Flamini G, Ricci D (2014) Essential oil composition and antimicrobial activity of Angelica archangelica L. (Apiaceae) roots. J Med Food 17(9):1043–7PubMedCrossRefGoogle Scholar
  115. 115.
    Michele N, Carmen M, Marisa D, et al (2015) Citrus bergamia essential oil: from basic research to clinical application. Front Pharmacol 6:36Google Scholar
  116. 116.
    Ompal S, Zakia K, Neelam M, et al (2011) Chamomile (Matricaria chamomilla L.): An overview. Pharmacogn Rev 5(9): 82–95CrossRefGoogle Scholar
  117. 117.
    Rossella A, Paola Z, Giulia P, et al (2000) Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla. Biochem Pharmacol 11:1387–94Google Scholar
  118. 118.
    Dmitry O, Ivo P, Bjoern F, et al (2011) Artemisia dracunculus L. (Tarragon): A Critical Review of Its Traditional Use, Chemical Composition, Pharmacology, and Safety. J Agric Food Chem 59(21):11367–84CrossRefGoogle Scholar
  119. 119.
    Spadaro F, Costa R, Circosta C, et al (2012) Volatile composition and biological activity of key lime Citrus aurantifolia essential oil. Nat Prod Commun 7(11):1523–6PubMedGoogle Scholar
  120. 120.
    Ain R, Elmar A, Anne O, et al (2008) Composition of the Essential Oil of Levisticum officinale W.D.J. Koch from Some European Countries. J Essent Oil Res 20:4Google Scholar
  121. 121.
    Abuhamdah S, Huang L, Elliott MS, et al (2008) Pharmacological profile of an essential oil derived from Melissa officinalis with anti-agitation properties: focus on ligand-gated channels. J Pharm Pharmacol 60(3):377–84PubMedCrossRefGoogle Scholar
  122. 122.
    Giovanni D, Luigi M (2010) Citrus Oils: Composition, Advanced Analytical Techniques, Contaminants, and Biological Activity. 586 Pages — 103 B/W Illustrations ISBN 9781439800287.Google Scholar
  123. 123.
    EMA/HMPC/560906/2010 Committee on Herbal Medicinal Products (HMPC) (2011)Google Scholar
  124. 124.
    Assessment report on Chamaemelum nobile (L.) All., flos. European Medicines Agency.Google Scholar
  125. 125.
    Verdeguer M, Blázquez M A, Boira H (2012) Chemical composition and herbicidal activity of the essential oil from a Cistus ladanifer L. population from Spain. Nat Prod Res 26(17):1602–9PubMedCrossRefGoogle Scholar
  126. 126.
    Wei-Rui L, Wen-Lin Q, Zi-Zhen L, et al (2013) Gaultheria: Phytochemical and Pharmacological Characteristics. Molecules 18(10):12071–8CrossRefGoogle Scholar
  127. 127.
    Milo N, Tatjana M, Miloš M, et al (2013) Chemical composition and biological activity of Gaultheria procumbens L. essential oil. Industrial Crops Prod 49:561–7CrossRefGoogle Scholar
  128. 128.
    Ben Hsouna A, Hamdi N, Ben Halima N, et al (2013) Characterization of essential oil from Citrus aurantium L. flowers: antimicrobial and antioxidant activities. J Oleo Sci 62(10):763–72PubMedCrossRefGoogle Scholar
  129. 129.
    Ammar AH, Bouajila J, Lebrihi A, et al (2012) Chemical composition and in vitro antimicrobial and antioxidant activities of Citrus aurantium l. flowers essential oil (Neroli oil). Pak J Biol Sci 15(21):1034–40PubMedCrossRefGoogle Scholar
  130. 130.
    Mohammad HB, Mohammad NS, Zahra S, et al (2011) Pharmacological Effects of Rosa Damascena. Iran J Basic Med Sci 14(4):295–307Google Scholar
  131. 131.
    Polyakov N, Dubinskaya V, Efremov A, et al (2014) Biological Activity of Abies Sibirica Essential Oil and its Major Constituents for Several Enzymes In Vitro. Pharmaceut Chemistr J 7:456CrossRefGoogle Scholar
  132. 132.
    Alessandra TP, Mario M (2002) Pharmacological activities and applications of Salvia sclarea and Salvia desoleana essential oils. Stud Nat Prod Chemistr 26:Part G, 391–423CrossRefGoogle Scholar
  133. 133.
    Asie S, Mehri F (2012) Review of Pharmacological Properties and Chemical Constituents of Pimpinella anisum. PMCID: PMC3405664 doi: 10.5402/2012/510795 Google Scholar
  134. 134.
    Al-Maskri AY, Hanif MA, Al-Maskari MY, et al (2011) Essential oil from Ocimum basilicum (Omani Basil): a desert crop. Nat Prod Commun 6(10):1487–90PubMedGoogle Scholar
  135. 135.
    Ismail M (2006) Central Properties and Chemical Composition of Ocimum basilicum Essential Oil. Pharmaceut Biol 8:619–26CrossRefGoogle Scholar
  136. 136.
    Miguel MG, Cruz C, Faleiro L, et al (2010) Foeniculum vulgare essential oils: chemical composition, antioxidant and antimicrobial activities. Nat Prod Commun 5(2):319–28PubMedGoogle Scholar
  137. 137.
    Manzoor AR, Bilal AD, Shahnawaz NS, et al 2012) Foeniculum vulgare: A comprehensive review of its traditional use, phytochemistry, pharmacology, and safety. doi: 10.1016/j.arabjc..04.011 Google Scholar
  138. 138.
    Assessment report on Achillea millefolium L., flos (2010) EMA/HMPC/149343/Committee on Herbal Medicinal Products (HMPC)Google Scholar
  139. 139.
    Falconieri D, Piras A, Porcedda S, et al (2011) Chemical composition and biological activity of the volatile extracts of Achillea millefolium. Nat Prod Commun 6(10):1527–30PubMedGoogle Scholar
  140. 140.
    Marie-Cécile B, Alain M, Pascale B, et al (2004) Chemical composition and variability of the essential oil. Flavour Fragr J 19: 314–9CrossRefGoogle Scholar
  141. 141.
    Asgary S, Naderi GA, Shams Ardekani MR, et al (2013) Chemical analysis and biological activities of Cupressus sempervirens var. horizontalis essential oils. Pharm Biol 51(2):137–44PubMedCrossRefGoogle Scholar
  142. 142.
    Selim SA, Adam ME, Hassan SM, et al (2014) Chemical composition, antimicrobial and antibiofilm activity of the essential oil and methanol extract of the Mediterranean cypress (Cupressus sempervirens L.). BMC Complement Altern Med 14:179PubMedCentralPubMedCrossRefGoogle Scholar
  143. 143.
    Koutsoudaki C, Krsek M, Rodger A (2005) Chemical composition and antibacterial activity of the essential oil and the gum of Pistacia lentiscus Var. chia. J Agric Food Chem 53(20):7681–5PubMedCrossRefGoogle Scholar
  144. 144.
    Maxia A, Sanna C, Frau MA, et al (2011) Anti-inflammatory activity of Pistacia lentiscus essential oil: involvement of IL-6 and TNF-alpha. Nat Prod Commun 6(10):1543–4PubMedGoogle Scholar
  145. 145.
    Ansari SH, Siddiqui A N (2012) pistacia lentiscus: a review on phytochemistry and pharmacological properties. Internat J Pharm Pharmaceut Sci 4:16Google Scholar
  146. 146.
    El Babili F, Bouajila J, Souchard JP, et al (2011) Oregano: chemical analysis and evaluation of its antimalarial, antioxidant, and cytotoxic activities. J Food Sci 76(3):C512–8PubMedCrossRefGoogle Scholar
  147. 147.
    Ustun O, Sezik E, Kurkcuoglu M (2006) Study of the essential oil composition of Pinus sylvestris from Turkey. Chemistr Natur Compounds 1:26–31CrossRefGoogle Scholar
  148. 148.
    Effect of Zingiber officinale essential oil on Fusarium verticillioides and fumonisin production Food Chem (2013) Dec 1;141(3):3147–52. doi:  10.1016/j.foodchem.2013.05.144. Epub 2013 Jun 10
  149. 149.
    Yamamoto-Ribeiro MM, Grespan R, Kohiyama CY, et al Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol 46(2):409–20Google Scholar
  150. 150.
    Chakrapani P, Venkatesh K, Chandra-Sekhar-Singh B (2013) Phytochemical, Pharmacological importance of Patchouli (Pogostemon cablin (Blanco) Benth) an aromatic medicinal plant. Internat J Pharmaceut Sci RevResear 21:7Google Scholar
  151. 151.
    Grechea H, Ismaili-Alaouia M, Zriraa S, (1999) Composition of Tanacetum annuum L. Oil from Morocco. J Essent Oil Res 11:343–8CrossRefGoogle Scholar
  152. 152.
    Observatoire Régional de la Santé Provence-Alpes-Côte d’Azur (2004). Les composés organiques volatils. Fiche VI, ORS pacaGoogle Scholar
  153. 153.
  154. 154.
  155. 155.
  156. 156.
  157. 157.
    http://www.sciencedirect.com/science?_ob=ArticleListURL&_method=list&_ArticleListID=880506187&_sort=r&_st=13&view=c&md5=1565686fa7554dd784d1d7fd52078acf&searchtype=a)/science?_ob=ArticleListURL&_method=list&_ArticleListID=880506187&_sort=r&_st=13&view=c&md5=1565686fa7554dd784d1d7fd52078acf&searchtype=a).
  158. 158.
    Hartmut K. Lichtenthaler (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Ann Rev Plant Physiol Plant Mol Biol 50:47–65CrossRefGoogle Scholar
  159. 159.
    Eisenreich W, Bacher A, Arigoni D, et al (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 61:1401–26PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2016

Authors and Affiliations

  1. 1.Laboratoire de neurotoxicologie, développement et bioactivitéUniversité de Lorraine, Campus de BridouxMetzFrance

Personalised recommendations