Phytothérapie

, Volume 14, Issue 1, pp 5–16 | Cite as

Étude de l’activité des extraits de feuilles de Punica granatum Linn sur Candida albicans et Rhodotorula spp

  • K. Kanoun
  • B. Abbouni
  • S. Boudissa
  • N. Bouhafs
  • M. Seddiki
Pharmacognosie
  • 158 Downloads

Résumé

Les plantes médicinales ont été utilisées pendant des siècles comme des remèdes pour les maladies humaines, en raison de leur composants bioactifs à vertus thérapeutiques contenus dans leurs extraits. Parmi ces dernières on trouve Punica granatum considérée comme plante médicinale alimentaire et ornementale, qui n’a pas encore dévoilé tous ses secrets. Le but de notre travail est d’évaluer l’activité antifongique de deux extraits méthanolique et éthanolique de feuilles du grenadier. À cet effet, les extraits ont été testés sur des souches cliniques (C. albicans clinique (c), R. spp) et de référence C. albicans (IP444, ATCC1231), en utilisant la méthode de diffusion en milieu gélosé. L’extrait éthanolique a produit des zones d’inhibition plus grandes que celles obtenues avec l’extrait méthanolique; d’autres paramètres sont à évaluer dans notre étude à savoir la détermination de la concentration minimale inhibitrice (CMI) et la concentration minimale fongicide (CMF) des souches testées.

Mots clés

Punica granatum Activité antifongique C. albicans R. spp CMI 

Study of the activity of Punica granatum Linn. leaves extracts on Candida albicans and Rhodotorula spp

Abstract

Medicinal plants have been used for centuries as remedies for human diseases, because of their bioactive components contained in therapeutic extracts. Among these we find Punica granatum considered as food, medicinal plant and as an ornamental, which has not yet revealed all its secrets. The aim of our study was to evaluate the antifungal activity of two methanolic and ethanolic leaf extracts of pomegranate. For this purpose, the extracts were tested on clinical strains (. albicans clinical (c), R. spp) and reference C. albicans (IP 444, ATCC 1231), using the agar diffusion method. The ethanol extract produced greater inhibitions zones than those obtained with the methanol extract; other parameters are to be evaluated in our study namely the determination of the minimum inhibitory concentration (MIC) and minimum fungicidal concentration of inhibition zones (MFC) of tested strains.

Keywords

Punica granatum Antifungal Activity C. albicans R. spp MIC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66:1022–37CrossRefPubMedGoogle Scholar
  2. 2.
    Bisignano G, Germano MP, Nostro A, et al (1996) Drugs used in Africa as dyes: antimicrobial activities. Phytother Res 9: 346–50Google Scholar
  3. 3.
    Lis-Balchin M, Deans SG (1996) Antimicrobial effects of hydrophilic extracts of Pelargonium species (Geraniacee). Lett Appl Microbiol 23: 205–7CrossRefPubMedGoogle Scholar
  4. 4.
    Maoz M, Neeman I (1998) Antimicrobial effects of aqueous plant extracts on the fungi Microsporum canis and Trichophyton rubrum and on three bacterial species. Lett Appl Microbiol 26: 61–3CrossRefPubMedGoogle Scholar
  5. 5.
    Hammer KA, Carson CF, Riley TV (1999) Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 86: 985–90CrossRefPubMedGoogle Scholar
  6. 6.
    Boldi AM (2004) Libraries from natural product-like scaffolds. Curr Op Chem Biol 8: 281–6CrossRefGoogle Scholar
  7. 7.
    Bruneton J (1999) Pharmacognosie, phytochimie, plantes médicinales (3e édition) Tec & Doc Lavoisier, Paris, 1120 pGoogle Scholar
  8. 8.
    Johann S, Silva D, Martins CB, et al (2008) Inhibitory effect of extracts from Brazilian medicinal plants on the adhesion of C.albicans to buccal epithelial cells. W J Microbiol Biotechnol 24:2459–64CrossRefGoogle Scholar
  9. 9.
    Storey T (2007) La grenade: le fruit médicament. Magazine Nexus Santé, France, 51: 46–54Google Scholar
  10. 10.
    Aït Youssef M (2006) Plantes médicinales de Kabylie, Ibis Press, Paris, Préface du docteur Jean-Philippe Brette, 349 pGoogle Scholar
  11. 11.
    Lima EO, Freira KRL, Farias NMP (2002) Avaliaca oda atividade antimicrobiana do extrato aquoso de Punica granatum L. (Punicaceae). Infarma 14:46–9Google Scholar
  12. 12.
    Kanoun K, Abbouni B, Bénine ML, et al (2014) Etude de l’efficacité ai]de l’extrait éthanolique d’écorces de Punica granatum. linn sur deux souches phytopathogènes: Ascocyhta rabiei (pass.) labr. et Fusarium oxysporum f.sp.radicis -lycopersici. Eur Sci J 10(12): 301–15Google Scholar
  13. 13.
    Caree P (1953) Précis de technologie et de chimie industrielle. Ed Ballière JB et fils, 238 pGoogle Scholar
  14. 14.
    Moroh JLA, Bahi C, Dje K, et al (2008) Étude de l’activité antibactérienne de l’extrait acétatique (EAC) de Morinda morindoides (Baker) milne-redheat (Rubiaceae) sur la croissance in vitro des souches d’Escherichia coli. Bull Soc Roy Sci Liège 77: 44–61Google Scholar
  15. 15.
    De Billerbeck VG, Roques C, Vanière P, et al (2002) Activité antibactérienne et antifongique de produits à base d’huiles essentielles. Hygiènes 10:248–51Google Scholar
  16. 16.
    Ponnusamy K, Petchiammal C, Mohankumar R, et al (2010) In vitro antifungal activity of indirubin isolated from a South Indian ethnomedicinal plant Wrightia tinctoria R. Br J Ethnopharmacol 132(1) 28: 349–54CrossRefPubMedGoogle Scholar
  17. 17.
    Amoo SO, Ndhlala AR, Finnie JF (2009) Antibacterial, antifungal and anti-inflammatory properties of Burchellia bubaline. S Afr J Bot 75 (1): 60–3CrossRefGoogle Scholar
  18. 18.
    Kirby-Bauer (1996) Antimicrobial sensitivity testing by agar diffusion method. African Journal of Clinical Pathology. Published by Fibiger United Kingdom 44:493Google Scholar
  19. 19.
    Berahou A, Auhmani AN, Fdil A, et al (2007) Antibacterial activity of Quercus ilex bark’s extracts. J Ethnopharmacol 112(3):426–9CrossRefPubMedGoogle Scholar
  20. 20.
    Al-Zoreky NS (2009) Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. Int J Food Microbiol 134: 244–8CrossRefPubMedGoogle Scholar
  21. 21.
    Hammer KA, Carson CF, Ridley CV (1999) Antimicrobial activity of essential oils and other plants extract. J Appl Microbiol 86:985–90CrossRefPubMedGoogle Scholar
  22. 22.
    Ciulei I (1980) Methodology for Analysis of Vegetable Drugs. Practical manual on the industrial utilization of medicinal and aromatic plants. Arta Grafica, Bucharest, Romania, 420 pGoogle Scholar
  23. 23.
    Höfling JF, Anibal PC, Obando-Pereda GA, et al (2010) Antimicrobial potential of some plant extracts against Candida species Braz J Biol 70(4): 1065–8CrossRefPubMedGoogle Scholar
  24. 24.
    Pesewu GA, Cutler RR, Humber DP (2008) Antibacterial activity of plants used in traditional medicines of Ghana with particular reference to MRSA. J Ethnopharmacol 116:102–11CrossRefPubMedGoogle Scholar
  25. 25.
    EUCAST (2013) The European Committee on Antimicrobial Susceptibility Testing. Détermination de la sensibilité aux antibiotiques Méthode EUCAST de diffusion en gélose Version 3.0, 19 pGoogle Scholar
  26. 26.
    Jain P, Nafis G (2011) Antifungal activity and phytochemical analysis of aqueous extracts of Ricinus communis and Punica granatum. J Pharm Res 4(1):128–9Google Scholar
  27. 27.
    Singla S, Gupta R, Puri A, et al (2013) Comparison of anticandidal activity of Punica granatum (Pomegranate) and Lawsonia inermis (Henna leaves): An in vitro study. Internat J Dental Res 1 (1): 8–13CrossRefGoogle Scholar
  28. 28.
    Duman AD, Ozgen M, Dayisoylu KS, et al (2009) Antimicrobial activity of six pomegranate (Punica granatum L.) varieties and their relation to some of their pomological and phytonutrient characteristics. Molecules 14(5): 1808–17CrossRefPubMedGoogle Scholar
  29. 29.
    Eloff JN (1998)Which extractant should be used for the screening and isolation of antimicrobial components from plants? J Ethnopharmacol 60: 1–8CrossRefPubMedGoogle Scholar
  30. 30.
    Senhaji O, Faid M, Elyachioui M, et al (2005) Antifungal activity of different cinnamon extracts. J Mycol Méd 15: 220–9CrossRefGoogle Scholar
  31. 31.
    Shafighi M, Amjad L, Madani M (2012) In vitro antifungal activity of methanolic extract of various parts of Punica granatum L. Internat J Scient Engine Res 3(12): 2229–5518Google Scholar
  32. 32.
    Hussein SM, Barakat HH, Merfort I, et al (1997) Tannins from the leaves of Punica granatum. Phytochemisto 45 (4): 819–23CrossRefGoogle Scholar
  33. 33.
    Leven MD, Vanden BDA, Marten T, et al (1979) Screening of higher plants for biological activity. Planta Medica 36: 311–2CrossRefGoogle Scholar
  34. 34.
    Vasconcelos LCS, Sampaio MCC, Sampaio FCS, et al (2003) Use of Punica granatum as an antifungal agent against candidosis associated with denture stomatitis. Mycoses 46:192–6CrossRefPubMedGoogle Scholar
  35. 35.
    Turner RB, Lindsey DL, Bishop RD (1975) Isolation and identification of 5,7 dimethoxyisoflavone. An inhibitor of Aspergillus flavus from peanuts. Mycopathol 57: 39–40CrossRefGoogle Scholar
  36. 36.
    Boiron P (1996) Organisation et Biologie des Champignons. Collection et éditions Nathan, 128pGoogle Scholar
  37. 37.
    Epstein WL, Shah P, Riegelman S (1972) Griseofulvin Levels in Stratum Corneum Study After Oral Administration in Man. Arch Dermatol 106 (3):344–8CrossRefPubMedGoogle Scholar
  38. 38.
    Klervi LL (2005) Connaissance chimiotaxonomique du genre Turbinaria et étude des composés de défense de différentes espèces de Sargassacées des îles Salmon (Pacific sud), 210 pGoogle Scholar
  39. 39.
    Kalemba D, Kunicka A (2003) Antibacterial and Antifungal Properties of Essential Oils. Curr Med Chem (17) 10:813–29CrossRefGoogle Scholar
  40. 40.
    Wagner H, Bladt S, Rickl V (1996) Plant Drug Analysis. A Thin Layer Chromatography Atlas. Springer-Verlag Berlin and Heidelberg GmbH & Co.K 2nd ed. 384 pGoogle Scholar
  41. 41.
    Das K, Tiwari RKS, Shrivastava DK (2010) Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends. J Med Plants Res 4 (2): 104–11Google Scholar

Copyright information

© Springer-Verlag France 2015

Authors and Affiliations

  • K. Kanoun
    • 1
  • B. Abbouni
    • 1
  • S. Boudissa
    • 2
  • N. Bouhafs
    • 2
  • M. Seddiki
    • 3
  1. 1.Laboratoire de microbiologie moléculaire santé et protéomique, département de biologie, Faculté des Sciences de la Nature et de la VieUniversité Djillali Liabés de Sidi-Bel-AbbésSidi-Bel-AbbésAlgérie
  2. 2.Laboratoire de microbiologie générale, département de biologie, Faculté des Sciences de la Nature et de la Vieuniversité Djillali Liabés de Sidi-Bel-AbbésSidi-Bel-AbbésAlgérie
  3. 3.Laboratoire AAPCSAB : Laboratoire antibiotique, antifongique, physico-chimie, synthèse, et Activité biologique de l’Université Abou Bekr Belkaid de TlemcenTlemcenAlgérie

Personalised recommendations