, Volume 14, Issue 1, pp 29–34 | Cite as

Positive effects of an oral supplementation by Glisodin, a gliadin-combined SOD-rich melon extract, in an animal model of dietary-induced oxidative stress

  • I. Hininger-Favier
  • M. Osman
  • A. M. Roussel
  • L. Intes
  • B. Montanari
Phytothérapie Expérimentale


We investigated the potential protective effects of two antioxidant molecules: Glisodin, a gliadin combined copper-zinc superoxide dismutase SOD (Cu,Zn SOD)-rich melon extract, SOD is a known enzyme that has been best studied as a regulator of antioxidant defence, and an antioxidant agent N-acetylcysteine (NAC). Glisodin, given orally to rats fed a chow diet, as 180 U/d during 2 weeks in a preconditioning treatment, and then for 8 weeks, combined to a high fat/high fructose diet (HF/HFr), had more positive effects than NAC (100 mg/d), not only on oxidative stress parameters, but also on features of the metabolic-syndrome. DNA oxidative damages, lipid peroxidation, and fasting glycaemia were lower in rats receiving Glisodin than in those supplemented by NAC. In addition, insulin sensitivity was improved and mesenteric fat was significantly lower in rats fed the Fr/Fe diet plus Glisodin than in animals fed NAC supplementation.

These data suggest potential beneficial effects of oral Glisodin supplementation in preventing metabolic alterations related to the metabolic syndrome.


Glisodin SOD melon extract Oxidative stress Metabolic syndrome 

Effets bénéfiques d’une supplémentation orale par le Glisodin, un extrait de melon combiné à de la gliadine, dans un modèle animal de stress oxydant induit par l’alimentation


Nous avons comparé les effets de deux molécules antioxydantes, le Glisodin, un extrait de melon riche en superoxide dismutase Cu, Zn (Cu, Zn-SOD) combiné à de la gliadine, et un agent antioxydant la NAC, N acétyl cystéine. Les deux antioxydants ont été administrés oralement 2 semaines en pré-conditionnement à des rats nourris au régime d’entretien, puis 8 semaines associées à un régime riche en fer et en fructose induisant un stress oxydant. Le Glisodin (180 U/j) a des effets bénéfiques supérieurs à ceux de la NAC (100 mg/j) non seulement sur le stress oxydant (dommages oxydatifs aux ADN, peroxydation lipidique) mais aussi sur les paramètres du syndrome métabolique (glycémie a jeun, insulinémie, graisse mésentérique).

Ces résultats suggèrent une utilisation thérapeutique du Glisodin dans le syndrome métabolique.

Mots clés

Glisodin SOD de melon Stress oxydant Syndrome métabolique 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wiwanitkit V (2014) Oxidative stress and the metabolic syndrome. Korean J Fam Med 35:44PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Modak MA, Parab PB, Gaskadbi SS (2014) Tissue specific oxidative stress profile in relation to glycaemic regulation in mice. Diabetes Metab Res Rev 30:31–41CrossRefPubMedGoogle Scholar
  3. 3.
    Odermatt A (2011) The Western-style diet: a major risk factor for impaired kidney function and chronic kidney disease. Am J Physiol Renal Physiol 301:F919–31CrossRefGoogle Scholar
  4. 4.
    Bisbal C, Lambert K, Avignon A (2010) Antioxidants and glucose metabolism disorders. Curr Opin Clin Nutr Metab Care 13:439–46CrossRefPubMedGoogle Scholar
  5. 5.
    Vernay M, Salanave B, Peretti C, et al. (2013) Metabolic syndrome and socioeconomic status in France: The French Nutrition and Health Survey (ENNS, 2006–2007). Int J Public Health 58:855–64CrossRefPubMedGoogle Scholar
  6. 6.
    Beltran-Sanchez H, Harhay MO, Harhay MM, McElligott S (2013) Prevalence and Trends of Metabolic Syndrome in the Adult U.S. Population, 1999–2010. J Am Coll Cardiol 62:697–703PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Miller A, Adeli K (2008) Dietary fructose and the metabolic syndrome. Curr Opin Gastroenterol 24:204–9CrossRefPubMedGoogle Scholar
  8. 8.
    Dekker MJ, Su Q, Baker C, et al (2010) Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab 299:E685–E94CrossRefPubMedGoogle Scholar
  9. 9.
    Rajpathak S, Ma J, Manson J, et al. (2008) Iron intake and the risk of of type 2 diabetes in women: a propective study. Diabetes care 31:285–6CrossRefGoogle Scholar
  10. 10.
    White DL, Collinson A (2013) Red meat, dietary heme iron and risk of diabetes type 2. Adv Nutr 4:403–11PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Sampaio AF, Silva M, Dornas WC, et al (2014) Iron toxicity mediated by oxidative stress enhances tissue damages in an animal model of diabetes. Biometals 27:349–61CrossRefPubMedGoogle Scholar
  12. 12.
    Hunnicutt J, He K, Xun P (2014) Dietary iron intake and body iron stores are associated with risk of coronary heart disease in a meta-analysis of prospective cohort studies. J Nutr 144:359–66PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Urrutia PJ, Mena NP, Nunez MT (2014) The interplay between iron accumulation, mitochondrial dysfunction and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol 5:38PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Zadak Z, Hyspler R, Ticha A (2009) Antioxidants and vitaminsin clinical conditions. Physiol Res 58.13–7Google Scholar
  15. 15.
    Vouldoukis I, Conti M, Krauss P, et al (2004) Supplementation with gliadin-combined plant superoxide dismutase extract promotes antioxidant defences and protects against oxidative stress. Phytother Res 18:957–62CrossRefPubMedGoogle Scholar
  16. 16.
    Hininger I, Chollat-Namy A, Sauvaigo S, et al (2004) Assessment of DNA damage by comet assay on frozen total blood: method and evaluation in smokers and non-smokers. Mut Res 558:75–80CrossRefGoogle Scholar
  17. 17.
    Richard MJ, Portal B, Meo J, et al (1992) Malondialdehyde kit evaluated for determining plasma and lipoprotein fractions that react with thiobarbituric acid. Clin Chem 38:704–9PubMedGoogle Scholar
  18. 18.
    Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–6CrossRefPubMedGoogle Scholar
  19. 19.
    Marklund S Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–74CrossRefPubMedGoogle Scholar
  20. 20.
    Tappy L, Le KA (2010) Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 90:23–46CrossRefPubMedGoogle Scholar
  21. 21.
    Keishadi R, Mansourian M, Heidani-Beni M (2014) Association of fructose consumption and components of the metabolic syndrome in human studies: a systematic review and meta-analysis. Nutrition 30:503–10CrossRefGoogle Scholar
  22. 22.
    Akram M, Hamid A (2013) Mini review on fructose metabolism. Obes Res Clin Pract 7:89–94CrossRefGoogle Scholar
  23. 23.
    Busserolles J, Gueux E, Rock E, et al (2003) Oligofructose protects against the pro-oxidative effects of a high fructose diet in rats. J Nutr 133:1903–8PubMedGoogle Scholar
  24. 24.
    Busserolles J, Rock E, Gueux E, Mazur A, et al (2002) Shortterm consumption of a high-sucrose diet has a pro-oxidant effect in rats. Br J Nutr 87:337–42CrossRefPubMedGoogle Scholar
  25. 25.
    White DL, Collinson A (2013) Red meat, dietary heme iron and risk of diabetes type 2. Adv Nutr 4:403–11PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Viviano KR, Vandertwielen B (2013) Effect of N acetylcysteine supplementation on intracellular glutathione, urine isoprostanes, clinical score and survival in hospitalised dogs. J Vet Intern Med 27:250–8CrossRefPubMedGoogle Scholar
  27. 27.
    Vouldoukis I, Conti M, Krauss P, et al (2004) Supplementation with gliadin-combined plant superoxide dismutase extract promotes antioxidant defences and protects against oxidative stress. Phytother Res 18:957–62CrossRefPubMedGoogle Scholar
  28. 28.
    Kick J, Hauser B, Bracht H, et al (2007) Effects of a cantaloupe melon extract/wheat gliadin biopolymer during aortic cross-clamping. Intensive Care Medicine. 33(4):694–702. Epub 2007 Jan 20CrossRefPubMedGoogle Scholar
  29. 29.
    Muth CM, Glenz Y, Klaus M, Radermacher P (2004). Influence of an orally effective SOD on hyperbaric oxygen-related cell damage. Free Rad Res 38(9):927-32CrossRefGoogle Scholar
  30. 30.
    Cloarec M, Caillard P, Provost JC, et al (2007) Glisodin, a vegetal SOD with gliadin, a preventive agent vs atherosclerosis, as confirmed with carotid ultrasound-B imaging. Eur Ann Allerg. Clin Immunol 39:2–7Google Scholar
  31. 31.
    Naito Y, Akagiri S, Uchiyama K et al (2005) Reduction of diabetes-induced renal oxidative stress by a cantaloupe melon extract/gliadin biopolymers, oxykine, in mice. Biofactors 23:85–9CrossRefPubMedGoogle Scholar
  32. 32.
    Carillon J, Romain C, Bardy G, et al (2013) Cafeteria diet induces obesity and insulin resistance associated with oxidative stress but not with inflammation: improvement by dietary supplementation with a melon superoxyde dismutase. Free Radic Biol Med 65:254–61CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag France 2015

Authors and Affiliations

  • I. Hininger-Favier
    • 1
  • M. Osman
    • 1
  • A. M. Roussel
    • 1
  • L. Intes
    • 2
  • B. Montanari
    • 2
  1. 1.LBFA/Inserm 1055Joseph Fourier UniversityGrenobleFrance
  2. 2.ISOCELL NUTRAParisFrance

Personalised recommendations